Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Article in English | MEDLINE | ID: mdl-38065229

ABSTRACT

OBJECTIVES: To investigate the effectiveness of health care team communication regarding cardiometabolic disease (CMD) risk factors with patients with subacute spinal cord injury (SCI). DESIGN: Multi-site prospective cross-sectional study. SETTING: Five National Institute on Disability, Independent Living, and Rehabilitation Research Model SCI Rehabilitation Centers. PARTICIPANTS: Ninety-six patients with subacute SCI, aged 18-70 years, with SCI (neurologic levels of injury C2-L2, American Spinal Injury Association Impairment Scale grades A-D), and enrolled within 2 months of initial rehabilitation discharge (N=96). INTERVENTIONS: None. MAIN OUTCOME MEASURE(S): Objective risk factors of CMD (body mass index, fasting glucose, insulin, high-density lipoprotein cholesterol, triglyceride levels, and resting blood pressure). Patient reported recall of these present risk factors being shared with them by their health care team. Medications prescribed to patients to address these present risk factors were checked against guideline- assessed risk factors. RESULTS: Objective evidence of 197 CMD risk factors was identified, with patients recalling less than 12% of these (P<.0001) being shared with them by their health care team. Thirty-one individuals (32%) met criteria for a diagnosis of CMD, with only 1 of these patients (3.2%) recalling that this was shared by their health care team (P<.0001). Pharmacologic management was prescribed to address these risk factors only 7.2% of the time. CONCLUSIONS: Despite high prevalence of CMD risk factors after acute SCI, patients routinely do not recall being told of their present risk factors. Multifaceted education and professionals' engagement efforts are needed to optimize treatment for these individuals.

2.
BMC Biol ; 20(1): 14, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35027054

ABSTRACT

BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.


Subject(s)
African Swine Fever Virus , Communicable Diseases , African Swine Fever Virus/genetics , Animals , Host-Pathogen Interactions/genetics , Macrophages , Stem Cells , Swine
3.
Arch Phys Med Rehabil ; 103(4): 696-701, 2022 04.
Article in English | MEDLINE | ID: mdl-34062117

ABSTRACT

OBJECTIVES: To (1) describe the prevalence of cardiometabolic disease (CMD) at spinal cord injury (SCI) rehabilitation discharge; (2) compare this with controls without SCI; and (3) identify factors associated with increased CMD. DESIGN: Multicenter, prospective observational study. SETTING: Five National Institute on Disability, Independent Living, and Rehabilitation Research Model SCI Rehabilitation Centers. PARTICIPANTS: SCI (n=95): patients aged 18-70 years, with SCI (neurologic levels of injury C2-L2, American Spinal Injury Association Impairment Scale grades A-D), and enrolled within 2 months of initial rehabilitation discharge. Control group (n=1609): age/sex/body mass index-matched entries in the National Health and Nutrition Examination Education Survey (2016-2019) (N=1704). INTERVENTIONS: None MAIN OUTCOME MEASURES: Percentage of participants with SCI with CMD diagnosis, prevalence of CMD determinants within 2 months of rehabilitation discharge, and other significant early risk associations were analyzed using age, sex, body mass index, insulin resistance (IR) by fasting glucose and Homeostasis Model Assessment (v.2), fasting triglycerides, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol, total cholesterol, and resting blood pressure (systolic and diastolic). RESULTS: Participants with SCI had significantly higher diastolic blood pressure and triglycerides than those without SCI, with lower fasting glucose and HDL-C. A total of 74.0% of participants with SCI vs 38.5% of those without SCI were obese when applying population-specific criteria (P<.05). Low HDL-C was measured in 54.2% of participants with SCI vs 15.4% of those without (P<.05). IR was not significantly different between groups. A total of 31.6% of participants with SCI had ≥3 CMD determinants, which was 40.7% higher than those without SCI (P<.05). Interplay of lipids and lipoproteins (ie, total cholesterol:HDL-C ratio and triglyceride:HDL-C ratio) were associated with elevated risk in participants with SCI for myocardial infarction and stroke. The only significant variable associated with CMD was age (P<.05). CONCLUSIONS: Individuals with SCI have an increased CMD risk compared with the general population; obesity, IR, and low HDL-C are the most common CMD risk determinants; age is significantly associated with early CMD.


Subject(s)
Insulin Resistance , Spinal Cord Injuries , Adolescent , Adult , Aged , Body Mass Index , Cardiometabolic Risk Factors , Humans , Middle Aged , Risk Factors , Spinal Cord Injuries/complications , Triglycerides , Young Adult
4.
Mol Reprod Dev ; 87(9): 930-933, 2020 09.
Article in English | MEDLINE | ID: mdl-32853477

ABSTRACT

The purine hypoxanthine plays important role in regulating oocyte maturation and early embryonic development. The enzyme hypoxanthine phosphoribosyltransferase (HPRT) recycles hypoxanthine to generate substrates for nucleotide synthesis and key metabolites, and here we show that HPRT deficiency in the rat disrupts early embryonic development and causes infertility in females.


Subject(s)
Infertility, Female/etiology , Lesch-Nyhan Syndrome/complications , Animals , Embryonic Development/genetics , Female , Fertility/genetics , Fetal Viability/genetics , Hypoxanthine/metabolism , Hypoxanthine Phosphoribosyltransferase/deficiency , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Infertility, Female/genetics , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/pathology , Pregnancy , Purines/metabolism , Rats
5.
Stem Cell Reports ; 14(1): 154-166, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31902707

ABSTRACT

Rat embryonic stem cells (rESCs) are capable of contributing to all differentiated tissues, including the germ line in chimeric animals, and represent a unique, authentic alternative to mouse embryonic stem cells for studying stem cell pluripotency and self-renewal. Here, we describe an EGFP reporter transgene that tracks expression of the benchmark naive pluripotency marker gene Rex1 (Zfp42) in the rat. Insertion of the EGFP reporter gene downstream of the Rex1 promoter disrupted Rex1 expression, but REX1-deficient rESCs and rats were viable and apparently normal, validating this targeted knockin transgene as a neutral reporter. The Rex1-EGFP gene responded to self-renewal/differentiation factors and validated the critical role of ß-catenin/LEF1 signaling. The stem cell reporter also allowed the identification of functionally distinct sub-populations of cells within rESC cultures, thus demonstrating its utility in discriminating between cell states in rat stem cell cultures, as well as providing a tool for tracking Rex1 expression in the rat.


Subject(s)
Cell Differentiation , Cell Self Renewal/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Genes, Reporter , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Cells, Cultured , Fluorescent Antibody Technique , Gene Expression , Gene Order , Genetic Vectors/genetics , Immunophenotyping , Rats
7.
J Immunol ; 201(9): 2683-2699, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30249809

ABSTRACT

We have produced Csf1r-deficient rats by homologous recombination in embryonic stem cells. Consistent with the role of Csf1r in macrophage differentiation, there was a loss of peripheral blood monocytes, microglia in the brain, epidermal Langerhans cells, splenic marginal zone macrophages, bone-associated macrophages and osteoclasts, and peritoneal macrophages. Macrophages of splenic red pulp, liver, lung, and gut were less affected. The pleiotropic impacts of the loss of macrophages on development of multiple organ systems in rats were distinct from those reported in mice. Csf1r-/- rats survived well into adulthood with postnatal growth retardation, distinct skeletal and bone marrow abnormalities, infertility, and loss of visceral adipose tissue. Gene expression analysis in spleen revealed selective loss of transcripts associated with the marginal zone and, in brain regions, the loss of known and candidate novel microglia-associated transcripts. Despite the complete absence of microglia, there was little overt phenotype in brain, aside from reduced myelination and increased expression of dopamine receptor-associated transcripts in striatum. The results highlight the redundant and nonredundant functions of CSF1R signaling and of macrophages in development, organogenesis, and homeostasis.


Subject(s)
Macrophages , Microglia , Organogenesis/genetics , Rats/growth & development , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/deficiency , Animals , Models, Animal , Mutation , Rats/genetics
8.
J Cell Sci ; 131(18)2018 09 20.
Article in English | MEDLINE | ID: mdl-30154213

ABSTRACT

The cytokine leukaemia inhibitory factor (LIF) promotes self-renewal of mouse embryonic stem cells (ESCs) through activation of the transcription factor Stat3. However, the contribution of other ancillary pathways stimulated by LIF in ESCs, such as the MAPK and PI3K pathways, is less well understood. We show here that naive-type mouse ESCs express high levels of a novel effector of the MAPK and PI3K pathways. This effector is an isoform of the Gab1 (Grb2-associated binder protein 1) adaptor protein that lacks the N-terminal pleckstrin homology (PH) membrane-binding domain. Although not essential for rapid unrestricted growth of ESCs under optimal conditions, the novel Gab1 variant (Gab1ß) is required for LIF-mediated cell survival under conditions of limited nutrient availability. This enhanced survival is absolutely dependent upon a latent palmitoylation site that targets Gab1ß directly to ESC membranes. These results show that constitutive association of Gab1 with membranes through a novel mechanism promotes LIF-dependent survival of murine ESCs in nutrient-poor conditions.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Embryonic Stem Cells/metabolism , Leukemia Inhibitory Factor/metabolism , Animals , Cells, Cultured , Signal Transduction
9.
Sci Rep ; 6: 25592, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27185277

ABSTRACT

Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour.


Subject(s)
Brain/metabolism , Disease Models, Animal , Dopamine/metabolism , Lesch-Nyhan Syndrome/metabolism , Animals , Humans , Hypoxanthine Phosphoribosyltransferase/deficiency , Hypoxanthine Phosphoribosyltransferase/genetics , Lesch-Nyhan Syndrome/genetics , Male , Metabolomics/methods , Mice, Knockout , Mutation , Purine Nucleotides/metabolism , Rats, Transgenic , Rodentia , Tandem Mass Spectrometry
10.
Methods Mol Biol ; 1212: 73-85, 2015.
Article in English | MEDLINE | ID: mdl-25224161

ABSTRACT

The rat is one of the most commonly used laboratory animals in biomedical research and the recent isolation of genuine pluripotent rat embryonic stem (ES) cell lines has provided new opportunities for applying contemporary genetic engineering techniques to the rat and enhancing the use of this rodent in scientific research. Technical refinements that improve the stability of the rat ES cell cultures will undoubtedly further strengthen and broaden the use of these stem cells in biomedical research. Here, we describe a relatively simple and robust protocol that supports the propagation of germ line competent rat ES cells, and outline how tuning stem cell signaling using small molecule inhibitors can be used to both stabilize self-renewal of rat ES cell cultures and aid evaluation of their differentiation potential in vitro.


Subject(s)
Cell Culture Techniques , Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Signal Transduction , Animals , Cell Lineage , Embryoid Bodies/cytology , Immunohistochemistry , Rats
11.
Stem Cells ; 31(10): 2104-15, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23843312

ABSTRACT

Stabilization of ß-catenin, through inhibition of glycogen synthase kinase 3 (GSK3) activity, in conjunction with inhibition of mitogen-activated protein kinase kinase 1/2 (MEK) promotes self-renewal of naïve-type mouse embryonic stem cells (ESC). In developmentally more advanced, primed-type, epiblast stem cells, however, ß-catenin activity induces differentiation. We investigated the response of rat ESCs to ß-catenin signaling and found that when maintained on feeder-support cells in the presence of a MEK inhibitor alone (1i culture), the derivation efficiency, growth, karyotypic stability, transcriptional profile, and differentiation potential of rat ESC cultures was similar to that of cell lines established using both MEK and GSK3 inhibitors (2i culture). Equivalent mouse ESCs, by comparison, differentiated in identical 1i conditions, consistent with insufficient ß-catenin activity. This interspecies difference in reliance on GSK3 inhibition corresponded with higher overall levels of ß-catenin activity in rat ESCs. Indeed, rat ESCs displayed widespread expression of the mesendoderm-associated ß-catenin targets, Brachyury and Cdx2 in 2i medium, and overt differentiation upon further increases in ß-catenin activity. In contrast, mouse ESCs were resistant to differentiation at similarly elevated doses of GSK3 inhibitor. Interestingly, without feeder support, moderate levels of GSK3 inhibition were necessary to support effective growth of rat ESC, confirming the conserved role for ß-catenin in ESC self-renewal. This work identifies ß-catenin signaling as a molecular rheostat in rat ESC, regulating self-renewal in a dose-dependent manner, and highlights the potential importance of controlling flux in this signaling pathway to achieve effective stabilization of naïve pluripotency.


Subject(s)
Embryonic Stem Cells/physiology , beta Catenin/metabolism , Animals , Benzamides/pharmacology , CDX2 Transcription Factor , Cell Proliferation , Cells, Cultured , Coculture Techniques , Culture Media , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Fetal Proteins/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , Homeodomain Proteins/metabolism , Laminin/metabolism , Mice , Pyridines/pharmacology , Pyrimidines/pharmacology , Rats , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism , Up-Regulation , Wnt Signaling Pathway
12.
Int J Cardiol ; 167(2): 570-4, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-22357423

ABSTRACT

BACKGROUND: Atherosclerotic cardiovascular disease is often thought of as a disease of modernity, a disease affecting primarily men and a disease primarily affecting members of affluent Western societies. METHODS: We reviewed CT scans for evidence of vascular calcification as a manifestation of atherosclerosis in ancient Egyptian female mummies and compared the results to clinical features of contemporary Egyptian women, who are suffering from an epidemic of atherosclerotic cardiovascular disease. RESULTS: The common assumption that atherosclerosis is strictly a modern disease which spares women, mainly affecting men, is not true. We report the CT examination of an ancient Egyptian woman who lived more than 3000 years ago, finding calcified atherosclerotic plaque in her systemic arteries and other abnormalities probably due to prior myocardial infarction. We also confirmed recent reports of a virtual epidemic of atherosclerotic cardiovascular disease in contemporary Egyptian women. CONCLUSIONS: Atherosclerosis, both ancient and contemporary, is common in women as well as in men, and is related to both a genetic predisposition and to environmental factors including diet, exercise, obesity and exposure to smoke and other toxins.


Subject(s)
Atherosclerosis/diagnosis , Atherosclerosis/history , Coronary Stenosis/diagnosis , Coronary Stenosis/history , Mummies/history , Mummies/pathology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/history , Egypt, Ancient , Female , History, Ancient , Humans , Middle Aged
13.
Cell Reprogram ; 14(2): 112-22, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22339199

ABSTRACT

Distinct signaling pathways are reported to maintain pluripotency in embryo-derived stem cells. Mouse embryonic stem cells (ESCs) respond to leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP)-mediated activity, whereas human ESCs depend upon Fibroblast growth factor (FGF) and activin signaling. In the majority of mammals investigated, however, the signals that support stem cell pluripotency are not well defined, as is evident by the persistent difficulties in maintaining authentic stable ESC lines. Induction of pluripotency by transcription factor-mediated reprogramming could provide an alternative way to produce ESC-like cells from nonpermissive species, and facilitate identification of core ESC signaling requirements. To evaluate the effectiveness of this approach in pigs, we transduced porcine foetal fibroblasts with retroviruses expressing Oct4, Sox2, Klf4, and c-Myc, and maintained the resulting cultures in medium containing either LIF or FGF2. Alkaline phosphatase positive colonies with compact, mouse ESC-like morphology were preferentially recovered using serum-free medium supplemented with LIF. These cell lines expressed the endogenous stem cell transcription factors, OCT4, NANOG, and SOX2, and the cell surface marker SSEA-4, consistent with acquisition of an undifferentiated state. However, restricted differentiation potential, and persistent expression of retroviral transgenes indicated that reprogramming was incomplete. Interestingly, LIF activated both the transcription factor STAT3 and its target gene SOCS3, and stimulated cell growth, indicating functional coupling of the signaling pathway in these cells. This demonstration of LIF-dependence in reprogrammed pig cells supports the notion that the connection between LIF/STAT3 signaling and the core regulatory network of pluripotent stem cells is a conserved pathway in mammals.


Subject(s)
Cellular Reprogramming/physiology , Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Leukemia Inhibitory Factor/metabolism , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/physiology , Fetus/cytology , Fetus/metabolism , Fetus/physiology , Fibroblasts/drug effects , Fibroblasts/physiology , Gene Expression Profiling , HEK293 Cells , Humans , Kruppel-Like Factor 4 , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/pharmacology , Leukemia Inhibitory Factor/physiology , Mice , Mice, Inbred NOD , Mice, SCID , Microarray Analysis , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/physiology , Swine , Transfection
14.
EMBO J ; 31(2): 317-29, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22056776

ABSTRACT

The role of DNA sequence in determining chromatin state is incompletely understood. We have previously demonstrated that large chromosomal segments from human cells recapitulate their native chromatin state in mouse cells, but the relative contribution of local sequences versus their genomic context remains unknown. In this study, we compare orthologous chromosomal regions for which the human locus establishes prominent sites of Polycomb complex recruitment in pluripotent stem cells, whereas the corresponding mouse locus does not. Using recombination-mediated cassette exchange at the mouse locus, we establish the primacy of local sequences in the encoding of chromatin state. We show that the signal for chromatin bivalency is redundantly encoded across a bivalent domain and that this reflects competition between Polycomb complex recruitment and transcriptional activation. Furthermore, our results suggest that a high density of unmethylated CpG dinucleotides is sufficient for vertebrate Polycomb recruitment. This model is supported by analysis of DNA methyltransferase-deficient embryonic stem cells.


Subject(s)
CpG Islands/physiology , Gene Expression Regulation/genetics , Repressor Proteins/metabolism , alpha-Globins/genetics , Animals , Cells, Cultured/metabolism , Chromatin/genetics , Chromosome Mapping , Chromosomes, Human, Pair 16 , DNA Methylation , DNA, Recombinant/genetics , Embryonic Stem Cells/metabolism , Humans , Mice , Mice, Transgenic , Pluripotent Stem Cells/metabolism , Polycomb-Group Proteins , Recombination, Genetic , Regulatory Sequences, Nucleic Acid , Species Specificity , Transcription, Genetic
15.
PLoS One ; 5(12): e14225, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21151976

ABSTRACT

The rat is the preferred experimental animal in many biological studies. With the recent derivation of authentic rat embryonic stem (ES) cells it is now feasible to apply state-of-the art genetic engineering in this species using homologous recombination. To establish whether rat ES cells are amenable to in vivo recombination, we tested targeted disruption of the hypoxanthine phosphoribosyltransferase (hprt) locus in ES cells derived from both inbred and outbred strains of rats. Targeting vectors that replace exons 7 and 8 of the hprt gene with neomycinR/thymidine kinase selection cassettes were electroporated into male Fisher F344 and Sprague Dawley rat ES cells. Approximately 2% of the G418 resistant colonies also tolerated selection with 6-thioguanine, indicating inactivation of the hprt gene. PCR and Southern blot analysis confirmed correct site-specific targeting of the hprt locus in these clones. Embryoid body and monolayer differentiation of targeted cell lines established that they retained differentiation potential following targeting and selection. This report demonstrates that gene modification via homologous recombination in rat ES cells is efficient, and should facilitate implementation of targeted, genetic manipulation in the rat.


Subject(s)
Embryonic Stem Cells/cytology , Gene Targeting/methods , Genetic Techniques , Recombination, Genetic , Animals , Animals, Genetically Modified , Blastocyst/cytology , Cells, Cultured , Hypoxanthine Phosphoribosyltransferase/genetics , Male , Models, Genetic , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Species Specificity
16.
Stem Cells ; 22(2): 225-35, 2004.
Article in English | MEDLINE | ID: mdl-14990861

ABSTRACT

The transcription factor Oct-4 is a marker of pluripotency in mouse and human embryonic stem (ES) cells. Previous studies using a tetracycline-regulated Oct-4 transgene in the ZHBTc4 cell line demonstrated that downregulation of Oct-4 expression induced dedifferentiation into trophoblast, a lineage mouse ES cells do not normally generate. We found that transfection of Oct-4-specific short interfering RNA significantly reduced expression and functional activity of Oct-4 in mouse and human ES cells, enabling its role to be compared in both cell types. In mouse ES cells, Oct-4 knockdown produced a pattern of morphological differentiation and increase in expression of the trophoblast-associated transcription factor Cdx2, similar to that triggered by suppressing the Oct-4 transgene in the ZHBTc4 cell line. In addition, downregulation of Oct-4 was accompanied by increased expression of the endoderm-associated genes Gata6 and alpha-fetoprotein, and a gene trap associated with primitive liver/yolk sac differentiation. In human ES cells, Oct-4 knockdown also induced morphological differentiation coincident with the upregulation of Gata6. The induction of Cdx2 and other trophoblast-associated genes, however, was dependent on the culture conditions. These results establish the general requirement for Oct-4 in maintaining pluripotency in ES cells. Moreover, the upregulation of endoderm-associated markers in both mouse and human ES cells points to overlap between development of trophoblast and endoderm differentiation.


Subject(s)
Avian Proteins , Cell Differentiation/physiology , DNA-Binding Proteins/metabolism , Stem Cells/cytology , Transcription Factors/metabolism , Animals , Cells, Cultured , DNA Primers , Embryo, Mammalian/cytology , GATA6 Transcription Factor , Homeodomain Proteins/metabolism , Humans , Mice , Octamer Transcription Factor-3 , RNA, Small Interfering/metabolism , alpha-Fetoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...