Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Virol ; : e0011024, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837381

ABSTRACT

We determined the transcription profile of adeno-associated virus type 2 (AAV2)-infected primary human fibroblasts. Subsequent analysis revealed that cells respond to AAV infection through changes in several significantly affected pathways, including cell cycle regulation, chromatin modulation, and innate immune responses. Various assays were performed to validate selected differentially expressed genes and to confirm not only the quality but also the robustness of the raw data. One of the genes upregulated in AAV2-infected cells was interferon-γ inducible factor 16 (IFI16). IFI16 is known as a multifunctional cytosolic and nuclear innate immune sensor for double-stranded as well as single-stranded DNA, exerting its effects through various mechanisms, such as interferon response, epigenetic modifications, or transcriptional regulation. IFI16 thereby constitutes a restriction factor for many different viruses among them, as shown here, AAV2 and thereof derived vectors. Indeed, the post-transcriptional silencing of IFI16 significantly increased AAV2 transduction efficiency, independent of the structure of the virus/vector genome. We also show that IFI16 exerts its inhibitory effect on AAV2 transduction in an immune-modulatory independent way by interfering with Sp1-dependent transactivation of wild-type AAV2 and AAV2 vector promoters. IMPORTANCE: Adeno-associated virus (AAV) vectors are among the most frequently used viral vectors for gene therapy. The lack of pathogenicity of the parental virus, the long-term persistence as episomes in non-proliferating cells, and the availability of a variety of AAV serotypes differing in their cellular tropism are advantageous features of this biological nanoparticle. To deepen our understanding of virus-host interactions, especially in terms of antiviral responses, we present here the first transcriptome analysis of AAV serotype 2 (AAV2)-infected human primary fibroblasts. Our findings indicate that interferon-γ inducible factor 16 acts as an antiviral factor in AAV2 infection and AAV2 vector-mediated cell transduction in an immune-modulatory independent way by interrupting the Sp1-dependent gene expression from viral or vector genomes.

2.
PLoS Pathog ; 18(7): e1010187, 2022 07.
Article in English | MEDLINE | ID: mdl-35816507

ABSTRACT

Nucleoli are membrane-less structures located within the nucleus and are known to be involved in many cellular functions, including stress response and cell cycle regulation. Besides, many viruses can employ the nucleolus or nucleolar proteins to promote different steps of their life cycle such as replication, transcription and assembly. While adeno-associated virus type 2 (AAV2) capsids have previously been reported to enter the host cell nucleus and accumulate in the nucleolus, both the role of the nucleolus in AAV2 infection, and the viral uncoating mechanism remain elusive. In all prior studies on AAV uncoating, viral capsids and viral genomes were not directly correlated on the single cell level, at least not in absence of a helper virus. To elucidate the properties of the nucleolus during AAV2 infection and to assess viral uncoating on a single cell level, we combined immunofluorescence analysis for detection of intact AAV2 capsids and capsid proteins with fluorescence in situ hybridization for detection of AAV2 genomes. The results of our experiments provide evidence that uncoating of AAV2 particles occurs in a stepwise process that is completed in the nucleolus and supported by alteration of the nucleolar structure.


Subject(s)
Dependovirus , Virus Uncoating , Capsid Proteins/metabolism , Dependovirus/genetics , HeLa Cells , Humans , In Situ Hybridization, Fluorescence
3.
Methods Mol Biol ; 2060: 57-72, 2020.
Article in English | MEDLINE | ID: mdl-31617172

ABSTRACT

The human herpesvirus family members, in particular herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2), are abundant and extremely contagious viruses with a high seroprevalence in the human population emphasizing the importance of studying their biology. Hence, the propagation and purification of virus stocks constitute a key element in laboratory work.


Subject(s)
Herpesvirus 1, Human/growth & development , Herpesvirus 1, Human/isolation & purification , Herpesvirus 2, Human/growth & development , Herpesvirus 2, Human/isolation & purification , Animals , Chlorocebus aethiops , Humans , Vero Cells
4.
J Virol ; 91(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28515305

ABSTRACT

Adeno-associated virus 2 (AAV2) depends on the simultaneous presence of a helper virus such as herpes simplex virus 1 (HSV-1) for productive replication. At the same time, AAV2 efficiently blocks the replication of HSV-1, which would eventually limit its own replication by diminishing the helper virus reservoir. This discrepancy begs the question of how AAV2 and HSV-1 can coexist in a cell population. Here we show that in coinfected cultures, AAV2 DNA replication takes place almost exclusively in S/G2-phase cells, while HSV-1 DNA replication is restricted to G1 phase. Live microscopy revealed that not only wild-type AAV2 (wtAAV2) replication but also reporter gene expression from both single-stranded and double-stranded (self-complementary) recombinant AAV2 vectors preferentially occurs in S/G2-phase cells, suggesting that the preference for S/G2 phase is independent of the nature of the viral genome. Interestingly, however, a substantial proportion of S/G2-phase cells transduced by the double-stranded but not the single-stranded recombinant AAV2 vectors progressed through mitosis in the absence of the helper virus. We conclude that cell cycle-dependent AAV2 rep expression facilitates cell cycle-dependent AAV2 DNA replication and inhibits HSV-1 DNA replication. This may limit competition for cellular and viral helper factors and, hence, creates a biological niche for either virus to replicate.IMPORTANCE Adeno-associated virus 2 (AAV2) differs from most other viruses, as it requires not only a host cell for replication but also a helper virus such as an adenovirus or a herpesvirus. This situation inevitably leads to competition for cellular resources. AAV2 has been shown to efficiently inhibit the replication of helper viruses. Here we present a new facet of the interaction between AAV2 and one of its helper viruses, herpes simplex virus 1 (HSV-1). We observed that AAV2 rep gene expression is cell cycle dependent and gives rise to distinct time-controlled windows for HSV-1 replication. High Rep protein levels in S/G2 phase support AAV2 replication and inhibit HSV-1 replication. Conversely, low Rep protein levels in G1 phase permit HSV-1 replication but are insufficient for AAV2 replication. This allows both viruses to productively replicate in distinct sets of dividing cells.


Subject(s)
Cell Cycle , DNA-Binding Proteins/metabolism , Dependovirus/growth & development , Helper Viruses/growth & development , Herpesvirus 1, Human/growth & development , Viral Interference , Viral Proteins/metabolism , Virus Replication , Cell Line , Coinfection , Gene Expression , Humans , Microscopy , Virus Cultivation
SELECTION OF CITATIONS
SEARCH DETAIL
...