Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
BMC Biol ; 15(1): 63, 2017 07 31.
Article in English | MEDLINE | ID: mdl-28756777

ABSTRACT

BACKGROUND: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. CONCLUSIONS: The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.


Subject(s)
Genome, Insect , Herbivory , Moths/genetics , Animals , Gene Expression Profiling , Genomics , Introduced Species , Larva/genetics , Larva/growth & development , Moths/classification , Moths/growth & development , Sequence Analysis, DNA
3.
Bioinformatics ; 17 Suppl 1: S132-9, 2001.
Article in English | MEDLINE | ID: mdl-11473002

ABSTRACT

Two different strategies for determining the human genome are currently being pursued: one is the "clone-by-clone" approach, employed by the publicly funded project, and the other is the "whole genome shotgun assembler" approach, favored by researchers at Celera Genomics. An interim strategy employed at Celera, called compartmentalized shotgun assembly, makes use of preliminary data produced by both approaches. In this paper we describe the design, implementation and operation of the "compartmentalized shotgun assembler".


Subject(s)
Cloning, Molecular/methods , Genome, Human , Chromosomes, Artificial, Bacterial/genetics , Computational Biology , Databases, Nucleic Acid , Humans , Sequence Analysis, DNA/statistics & numerical data , Software
4.
Science ; 291(5507): 1304-51, 2001 02 16.
Article in English | MEDLINE | ID: mdl-11181995

ABSTRACT

A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.


Subject(s)
Genome, Human , Human Genome Project , Sequence Analysis, DNA , Algorithms , Animals , Chromosome Banding , Chromosome Mapping , Chromosomes, Artificial, Bacterial , Computational Biology , Consensus Sequence , CpG Islands , DNA, Intergenic , Databases, Factual , Evolution, Molecular , Exons , Female , Gene Duplication , Genes , Genetic Variation , Humans , Introns , Male , Phenotype , Physical Chromosome Mapping , Polymorphism, Single Nucleotide , Proteins/genetics , Proteins/physiology , Pseudogenes , Repetitive Sequences, Nucleic Acid , Retroelements , Sequence Analysis, DNA/methods , Species Specificity
5.
Science ; 287(5461): 2196-204, 2000 Mar 24.
Article in English | MEDLINE | ID: mdl-10731133

ABSTRACT

We report on the quality of a whole-genome assembly of Drosophila melanogaster and the nature of the computer algorithms that accomplished it. Three independent external data sources essentially agree with and support the assembly's sequence and ordering of contigs across the euchromatic portion of the genome. In addition, there are isolated contigs that we believe represent nonrepetitive pockets within the heterochromatin of the centromeres. Comparison with a previously sequenced 2.9- megabase region indicates that sequencing accuracy within nonrepetitive segments is greater than 99. 99% without manual curation. As such, this initial reconstruction of the Drosophila sequence should be of substantial value to the scientific community.


Subject(s)
Computational Biology , Drosophila melanogaster/genetics , Genome , Sequence Analysis, DNA , Algorithms , Animals , Chromatin/genetics , Contig Mapping , Euchromatin , Genes, Insect , Heterochromatin/genetics , Molecular Sequence Data , Physical Chromosome Mapping , Repetitive Sequences, Nucleic Acid , Sequence Tagged Sites
6.
Science ; 287(5461): 2185-95, 2000 Mar 24.
Article in English | MEDLINE | ID: mdl-10731132

ABSTRACT

The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.


Subject(s)
Drosophila melanogaster/genetics , Genome , Sequence Analysis, DNA , Animals , Biological Transport/genetics , Chromatin/genetics , Cloning, Molecular , Computational Biology , Contig Mapping , Cytochrome P-450 Enzyme System/genetics , DNA Repair/genetics , DNA Replication/genetics , Drosophila melanogaster/metabolism , Euchromatin , Gene Library , Genes, Insect , Heterochromatin/genetics , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/physiology , Nuclear Proteins/genetics , Protein Biosynthesis , Transcription, Genetic
7.
Nature ; 399(6734): 323-9, 1999 May 27.
Article in English | MEDLINE | ID: mdl-10360571

ABSTRACT

The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of other thermophilic Eubacteria and Archaea. Of the Eubacteria sequenced to date, T. maritima has the highest percentage (24%) of genes that are most similar to archaeal genes. Eighty-one archaeal-like genes are clustered in 15 regions of the T. maritima genome that range in size from 4 to 20 kilobases. Conservation of gene order between T. maritima and Archaea in many of the clustered regions suggests that lateral gene transfer may have occurred between thermophilic Eubacteria and Archaea.


Subject(s)
Archaea/genetics , Genome, Bacterial , Recombination, Genetic , Thermotoga maritima/genetics , Bacterial Proteins/metabolism , DNA, Bacterial , Genes, Archaeal , Molecular Sequence Data , Multigene Family , Open Reading Frames , Phylogeny , Protein Biosynthesis , Sequence Analysis, DNA , Thermotoga maritima/classification , Thermotoga maritima/physiology , Transcription, Genetic , Transformation, Bacterial
8.
Science ; 282(5391): 1126-32, 1998 Nov 06.
Article in English | MEDLINE | ID: mdl-9804551

ABSTRACT

Chromosome 2 of Plasmodium falciparum was sequenced; this sequence contains 947,103 base pairs and encodes 210 predicted genes. In comparison with the Saccharomyces cerevisiae genome, chromosome 2 has a lower gene density, introns are more frequent, and proteins are markedly enriched in nonglobular domains. A family of surface proteins, rifins, that may play a role in antigenic variation was identified. The complete sequencing of chromosome 2 has shown that sequencing of the A+T-rich P. falciparum genome is technically feasible.


Subject(s)
Chromosomes/genetics , Genes, Protozoan , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Sequence Analysis, DNA , Amino Acid Sequence , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Base Composition , Evolution, Molecular , Genome, Protozoan , Introns , Membrane Proteins/chemistry , Membrane Proteins/genetics , Molecular Sequence Data , Multigene Family , Physical Chromosome Mapping , Protozoan Proteins/chemistry , RNA, Protozoan/genetics , RNA, Transfer, Glu/genetics , Repetitive Sequences, Nucleic Acid , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment
9.
Science ; 281(5375): 375-88, 1998 Jul 17.
Article in English | MEDLINE | ID: mdl-9665876

ABSTRACT

The complete genome sequence of Treponema pallidum was determined and shown to be 1,138,006 base pairs containing 1041 predicted coding sequences (open reading frames). Systems for DNA replication, transcription, translation, and repair are intact, but catabolic and biosynthetic activities are minimized. The number of identifiable transporters is small, and no phosphoenolpyruvate:phosphotransferase carbohydrate transporters were found. Potential virulence factors include a family of 12 potential membrane proteins and several putative hemolysins. Comparison of the T. pallidum genome sequence with that of another pathogenic spirochete, Borrelia burgdorferi, the agent of Lyme disease, identified unique and common genes and substantiates the considerable diversity observed among pathogenic spirochetes.


Subject(s)
Genome, Bacterial , Sequence Analysis, DNA , Treponema pallidum/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Borrelia burgdorferi Group/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA Repair/genetics , DNA Replication/genetics , DNA Restriction Enzymes/genetics , Energy Metabolism/genetics , Genes, Bacterial , Genes, Regulator , Heat-Shock Response/genetics , Lipoproteins/genetics , Membrane Proteins/genetics , Molecular Sequence Data , Movement , Open Reading Frames , Oxygen Consumption/genetics , Protein Biosynthesis , Recombination, Genetic , Replication Origin , Transcription, Genetic , Treponema pallidum/metabolism , Treponema pallidum/pathogenicity
11.
Nature ; 390(6660): 580-6, 1997 Dec 11.
Article in English | MEDLINE | ID: mdl-9403685

ABSTRACT

The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains 853 genes encoding a basic set of proteins for DNA replication, transcription, translation, solute transport and energy metabolism, but, like Mycoplasma genitalium, it contains no genes for cellular biosynthetic reactions. Because B. burgdorferi and M. genitalium are distantly related eubacteria, we suggest that their limited metabolic capacities reflect convergent evolution by gene loss from more metabolically competent progenitors. Of 430 genes on 11 plasmids, most have no known biological function; 39% of plasmid genes are paralogues that form 47 gene families. The biological significance of the multiple plasmid-encoded genes is not clear, although they may be involved in antigenic variation or immune evasion.


Subject(s)
Borrelia burgdorferi Group/genetics , Genome, Bacterial , Biological Transport , Chemotaxis , Chromosomes, Bacterial , DNA Repair , DNA, Bacterial/biosynthesis , DNA, Bacterial/genetics , Energy Metabolism , Gene Expression Regulation, Bacterial , Lyme Disease/microbiology , Membrane Proteins/genetics , Molecular Sequence Data , Plasmids , Protein Biosynthesis , Recombination, Genetic , Replication Origin , Telomere , Transcription, Genetic
12.
Nature ; 390(6658): 364-70, 1997 Nov 27.
Article in English | MEDLINE | ID: mdl-9389475

ABSTRACT

Archaeoglobus fulgidus is the first sulphur-metabolizing organism to have its genome sequence determined. Its genome of 2,178,400 base pairs contains 2,436 open reading frames (ORFs). The information processing systems and the biosynthetic pathways for essential components (nucleotides, amino acids and cofactors) have extensive correlation with their counterparts in the archaeon Methanococcus jannaschii. The genomes of these two Archaea indicate dramatic differences in the way these organisms sense their environment, perform regulatory and transport functions, and gain energy. In contrast to M. jannaschii, A. fulgidus has fewer restriction-modification systems, and none of its genes appears to contain inteins. A quarter (651 ORFs) of the A. fulgidus genome encodes functionally uncharacterized yet conserved proteins, two-thirds of which are shared with M. jannaschii (428 ORFs). Another quarter of the genome encodes new proteins indicating substantial archaeal gene diversity.


Subject(s)
Archaeoglobus fulgidus/genetics , Genes, Archaeal , Genome , Archaeoglobus fulgidus/metabolism , Archaeoglobus fulgidus/physiology , Base Sequence , Cell Division , DNA, Bacterial/genetics , Energy Metabolism , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Protein Biosynthesis , Transcription, Genetic
13.
Nature ; 388(6642): 539-47, 1997 Aug 07.
Article in English | MEDLINE | ID: mdl-9252185

ABSTRACT

Helicobacter pylori, strain 26695, has a circular genome of 1,667,867 base pairs and 1,590 predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified, underscoring the potential complexity of host-pathogen interaction. Based on the large number of sequence-related genes encoding outer membrane proteins and the presence of homopolymeric tracts and dinucleotide repeats in coding sequences, H. pylori, like several other mucosal pathogens, probably uses recombination and slipped-strand mispairing within repeats as mechanisms for antigenic variation and adaptive evolution. Consistent with its restricted niche, H. pylori has a few regulatory networks, and a limited metabolic repertoire and biosynthetic capacity. Its survival in acid conditions depends, in part, on its ability to establish a positive inside-membrane potential in low pH.


Subject(s)
Genome, Bacterial , Helicobacter pylori/genetics , Antigenic Variation , Bacterial Adhesion , Bacterial Proteins/metabolism , Base Sequence , Biological Evolution , Cell Division , DNA Repair , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Helicobacter pylori/metabolism , Helicobacter pylori/pathogenicity , Hydrogen-Ion Concentration , Molecular Sequence Data , Protein Biosynthesis , Recombination, Genetic , Transcription, Genetic , Virulence
14.
Science ; 273(5278): 1058-73, 1996 Aug 23.
Article in English | MEDLINE | ID: mdl-8688087

ABSTRACT

The complete 1.66-megabase pair genome sequence of an autotrophic archaeon, Methanococcus jannaschii, and its 58- and 16-kilobase pair extrachromosomal elements have been determined by whole-genome random sequencing. A total of 1738 predicted protein-coding genes were identified; however, only a minority of these (38 percent) could be assigned a putative cellular role with high confidence. Although the majority of genes related to energy production, cell division, and metabolism in M. jannaschii are most similar to those found in Bacteria, most of the genes involved in transcription, translation, and replication in M. jannaschii are more similar to those found in Eukaryotes.


Subject(s)
Bacterial Proteins/genetics , DNA, Bacterial/genetics , Genome, Bacterial , Methanococcus/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Base Composition , Base Sequence , Biological Transport/genetics , Carbon Dioxide/metabolism , Chromosome Mapping , Chromosomes, Bacterial/genetics , DNA Replication , Databases, Factual , Energy Metabolism/genetics , Genes, Bacterial , Hydrogen/metabolism , Methane/metabolism , Methanococcus/physiology , Molecular Sequence Data , Protein Biosynthesis , Sequence Analysis, DNA , Transcription, Genetic
15.
IEEE Trans Neural Netw ; 5(3): 502-4, 1994.
Article in English | MEDLINE | ID: mdl-18267818

ABSTRACT

Implementations of competitive learning often use input and weight vectors "normalized" based on the sum of weight vector components. While it is realized that some distortion of results can occur with this procedure, it is generally not appreciated how dramatic the distortion can be, and that it compromises the dot product as a similarity measure. We show here that in some cases an input vector identical to an existing output node weight vector can be classified as belonging to a different output node. This contradicts the generally-accepted concept of weight vectors developing as prototypes during competitive learning. Ways to minimize this problem are also given.

16.
MD Comput ; 7(1): 12-24, 58, 1990.
Article in English | MEDLINE | ID: mdl-2308503

ABSTRACT

Developing and evaluating connectionist models (also called neural models) is a difficult and time-consuming task. To address this issue, we designed a software system called Maryland MIRRORS/II for the construction of connectionist models in biomedicine and other fields. Maryland MIRRORS/II is distinguished from previous and current related systems by its support of a high-level nonprocedural language, a general-purpose event-handling mechanism, and an indexed library of system resources. These features make Maryland MIRRORS/II a convenient software tool for use in biomedicine. This paper describes Maryland MIRRORS/II and provides a simple example in which it uses error back propagation learning to select the appropriate treatment for a given set of manifestations.


Subject(s)
Computer Simulation , Models, Neurological , Software , Programming Languages , Software Design
17.
J Neurol Neurosurg Psychiatry ; 38(5): 505-7, 1975 May.
Article in English | MEDLINE | ID: mdl-1151417

ABSTRACT

The findings in a patient with focal reflex or action myoclonus suggest that the cortical somatosensory evoked response and the long loop reflex of the finger flexor muscles evoked by extension of the index finger at the volar surface of the distal phalanx occur largely through stimulation of touch or pressure receptors with evidence of a lesser contribution by joint receptors or muscle stretch receptors. Touch or pressure in the absence of movement is an adequate stimulus, whereas muscle stretch by itself is not.


Subject(s)
Myoclonus/physiopathology , Reflex, Abnormal/physiopathology , Sensory Receptor Cells/physiopathology , Somatosensory Cortex/physiopathology , Electric Stimulation , Electromyography , Evoked Potentials , Humans , Mechanoreceptors/physiopathology , Myoclonus/complications , Pressure , Reflex, Abnormal/complications , Touch
18.
J Neurol Neurosurg Psychiatry ; 37(2): 207-17, 1974 Feb.
Article in English | MEDLINE | ID: mdl-4819909

ABSTRACT

In a patient with reflex myoclonus limited to the right side of the body, stimulation of the right median nerve in the index finger or wrist elicited a very large somatosensory evoked response (SER) and a long loop C reflex which represents an electrically evoked myoclonic response. It is suggested that the pathway for the C reflex is through peripheral nerve, dorsal funiculus of spinal cord, contralateral VP nucleus of thalamus, sensorimotor cortex, corticospinal tract, and anterior horn cell. The large SER, C reflex, and myoclonic jerks are presumed to result from a release effect causing increased excitability at central synapses along this pathway. The patient presented has a large atrophic vascular lesion involving the left frontotemporoparietal region and involvement of pathways through the right superior cerebellar peduncle to account for the neural dysfunction.


Subject(s)
Cerebrovascular Disorders/physiopathology , Myoclonus/physiopathology , Reflex , Somatosensory Cortex/physiopathology , Aged , Cerebrovascular Disorders/complications , Diazepam/therapeutic use , Electric Stimulation , Electroencephalography , Evoked Potentials , Female , Humans , Median Nerve/physiopathology , Muscle Contraction , Muscles/physiopathology , Myoclonus/drug therapy , Myoclonus/etiology , Neural Pathways/physiopathology , Secobarbital/therapeutic use , Spinal Cord/physiopathology , Thalamic Nuclei/physiopathology
20.
J Physiol ; 191(3): 699-711, 1967 Aug.
Article in English | MEDLINE | ID: mdl-6051798

ABSTRACT

1. Total root-mean-square (r.m.s.) error over an effectively unrestricted band, and error power spectra from 0.256 to 12.5 c/s were measured for four subjects attempting to maintain fixed forces of 1-6 Lb. (0.45-2.72 kg) on a pressure joystick. The subject could see his errors as the deflexion of a cathode ray tube spot.2. The total r.m.s. error increases linearly with force with a considerable (positive) intercept when the line is extrapolated to zero force. Hence accuracy in the sense (r.m.s. error)/(force) increases with force for this type of control.3. The rate of increase of total r.m.s. error with force is greater in subjects with prominent tremor peaks in their power spectra at 8-10 c/s.4. At each frequency the r.m.s. error per unit bandwidth also increases linearly with force. Except at the very lowest frequencies the rate of increase is greater in subjects with prominent tremor peaks at 8-10 c/s. This is thought to account for the observation described in paragraph 3.5. The frequency of the tremor peak near 8-10 c/s is almost independent of the force exerted.


Subject(s)
Hand , Muscles/physiology , Physical Exertion/physiology , Feedback , Humans , Vision, Ocular/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...