Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Microbes ; 14(1): 2013761, 2022.
Article in English | MEDLINE | ID: mdl-34965174

ABSTRACT

Fecal microbiota transplantation (FMT) is an efficient treatment for recurrent Clostridioides difficile infection and currently investigated as a treatment for other intestinal and systemic diseases. Better understanding of the species potentially transferred in FMT is needed. We isolated from a healthy fecal donor a novel strain E10-96H of Pseudoruminococcus massiliensis, a recently described strictly anaerobic species currently represented only by the type strain. The whole genome sequence of E10-96H had over 98% similarity with the type strain. E10-96H carries 20 glycoside hydrolase encoding genes, degrades starch in vitro and thus may contribute to fiber degradation, cross-feeding of other species and butyrate production in the intestinal ecosystem. The strain carries pilus-like structures, harbors pilin genes in its genome and adheres to enterocytes in vitro but does not provoke a proinflammatory response. P. massiliensis seems to have commensal behavior with the host epithelium, and its role in intestinal ecology should be studied further.


Subject(s)
Firmicutes/isolation & purification , Firmicutes/physiology , Intestines/microbiology , Adaptation, Physiological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Butyrates/metabolism , Firmicutes/classification , Firmicutes/genetics , Gastrointestinal Microbiome , Genome, Bacterial , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Host Microbial Interactions , Humans
2.
Front Microbiol ; 11: 575455, 2020.
Article in English | MEDLINE | ID: mdl-33281770

ABSTRACT

Odoribacter splanchnicus, belonging to the order Bacteroidales, is a common, short-chain fatty acid producing member of the human intestinal microbiota. A decreased abundance of Odoribacter has been linked to different microbiota-associated diseases, such as non-alcoholic fatty liver disease, cystic fibrosis and inflammatory bowel disease (IBD). The type strain of O. splanchnicus has been genome-sequenced, but otherwise very little is known about this anaerobic bacterium. The species surfaces in many microbiota studies and, consequently, comprehension on its interactions with the host is needed. In this study, we isolated a novel strain of O. splanchnicus from a healthy fecal donor, identified it by genome sequencing and addressed its adhesive, epithelium reinforcing and immunoregulatory properties. Our results show that O. splanchnicus strain 57 is non-adherent to enterocytes or mucus, does not reinforce nor compromise Caco-2 monolayer integrity and most likely harbors penta-acylated, less endotoxic lipid A as part of its lipopolysaccharide (LPS) structure based on the lack of gene lpxM and in vitro results on low-level NF-κB activity. The studies by transmission electron microscopy revealed that O. splanchnicus produces outer membrane vesicles (OMV). O. splanchnicus cells, culture supernatant i.e., spent medium or OMVs did not induce interleukin-8 (IL-8) response in HT-29 enterocyte cells suggesting a very low proinflammatory capacity. On the contrary, the treatment of HT-29 cells with O. splanchnicus cells, spent medium or OMVs prior to exposure to Escherichia coli LPS elicited a significant decrease in IL-8 production as compared to E. coli LPS treatment alone. Moreover, O. splanchnicus spent supernatant induced IL-10 production by immune cells, suggesting anti-inflammatory activity. Our in vitro findings indicate that O. splanchnicus and its effector molecules transported in OMVs could potentially exert anti-inflammatory action in the gut epithelium. Taken together, O. splanchnicus seems to be a commensal with a primarily beneficial interaction with the host.

3.
Nutrients ; 12(4)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230951

ABSTRACT

Altered intestinal microbiota is associated with systemic and intestinal diseases, such as inflammatory bowel disease (IBD). Dysbiotic microbiota with enhanced proinflammatory capacity is characterized by depletion of anaerobic commensals, increased proportion of facultatively anaerobic bacteria, as well as reduced diversity and stability. In this study, we developed a high-throughput in vitro screening assay to isolate intestinal commensal bacteria with anti-inflammatory capacity from a healthy fecal microbiota transplantation donor. Freshly isolated gut bacteria were screened for their capacity to attenuate Escherichia coli lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) release from HT-29 cells. The screen yielded a number of Bacteroides and Parabacteroides isolates, which were identified as P. distasonis, B. caccae, B. intestinalis, B. uniformis, B. fragilis, B. vulgatus and B. ovatus using whole genome sequencing. We observed that a cell-cell contact with the epithelium was not necessary to alleviate in vitro inflammation as spent culture media from the isolates were also effective and the anti-inflammatory action did not correlate with the enterocyte adherence capacity of the isolates. The anti-inflammatory isolates also exerted enterocyte monolayer reinforcing action and lacked essential genes to synthetize hexa-acylated, proinflammatory lipid A, part of LPS. Yet, the anti-inflammatory effector molecules remain to be identified. The Bacteroides strains isolated and characterized in this study have potential to be used as so-called next-generation probiotics.


Subject(s)
Anti-Inflammatory Agents/metabolism , Bacteroides , Gastrointestinal Microbiome/immunology , Adult , Bacteroides/classification , Bacteroides/immunology , Bacteroides/isolation & purification , Bacteroides/metabolism , Bacteroidetes/classification , Bacteroidetes/immunology , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , Caco-2 Cells , Feces/microbiology , Female , High-Throughput Screening Assays , Homeostasis/immunology , Humans , Interleukin-8/analysis , Interleukin-8/metabolism , Lipopolysaccharides/metabolism , Probiotics
SELECTION OF CITATIONS
SEARCH DETAIL
...