Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 849: 157823, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35931171

ABSTRACT

Reference evapotranspiration (ETo) is a variable that helps determine atmospheric pressure on living (reference) grass to release water into the atmosphere. For this purpose, four main driving forces: air temperature, air humidity, solar radiation, and wind speed need to be measured over the well-watered reference grass. The relative influence of these driving forces is region and climate-specific, with daily and seasonal variations. A clear understanding of the dynamic interactions of ETo's driving factors can illuminate the water and energy cycles of the earth and assist modelers with more accurate predictions of ETo. In this study, Pearson correlation, mutual information, and random forest feature importance analyses have been used to evaluate the relative importance of meteorological driving forces of ETo in California. To better understand the interrelations of these variables, 1,365,823 daily data samples from 237 standardized weather stations for 36 years have been clustered into homogeneous climatic zones and analyzed. To compensate for the effects of seasonality, feature importance analysis is also conducted on seasonal and monthly clustered data. Moreover, seasonal and annual trends of ETo and its driving factors are investigated for California and homogeneous zones using the Mann-Kendall test. Our findings reveal that for annually clustered data, solar radiation is the most influential driving factor of ETo in California. However, analysis of seasonal and monthly clustered data shows that vapor pressure deficit is the most informative factor during the summer and spring, while solar radiation is more important during the colder seasons. Results of trend analysis don't suggest a consistent monotonic trend for ETo and other variables for different seasons and zones. However, it is shown that agricultural regions with heavy irrigation dependence like the Central Valley are getting warmer and drier, especially during the irrigation season. This can adversely affect the water resources, agriculture industry, and food production of California, and modeling efforts like this can be very informative for future water resources management.


Subject(s)
Weather , Wind , Poaceae , Seasons , Temperature , Water
2.
Nature ; 599(7883): 32, 2021 11.
Article in English | MEDLINE | ID: mdl-34728802

Subject(s)
Climate Change , Climate
3.
Environ Sci Technol ; 53(2): 671-681, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30566833

ABSTRACT

Rice cultivation contributes 11% of the global 308 Tg CH4 anthropogenic emissions. The alternate wetting and drying (AWD) irrigation practice can conserve water while reducing CH4 emissions through the deliberate, periodic introduction of aerobic soil conditions. This paper is the first to measure the impact of AWD on rice field CH4 emissions using the eddy covariance (EC) method. This method provides continuous, direct observations over a larger footprint than in previous chamber-based approaches. Seasonal CH4 emissions from a pair of adjacent, production-sized rice fields under delayed flood (DF) and AWD irrigation were compared from 2015 to 2017. Across the 2 fields and 3 years, cumulative CH4 emissions in the production season were in the range of 7.1 to 31.7 kg CH4-C ha-1 for the AWD treatment and in the range of 75.7-141.6 kg CH4-C ha-1 for the DF treatments. Correcting for field-to-field differences in CH4 production, the AWD practice reduced seasonal CH4 emissions by 64.5 ± 2.5%. The AWD practice is increasingly implemented for water conservation in the mid-south region of the United States; however, based on this study, it also has great potential for reducing CH4 emissions.


Subject(s)
Oryza , Agriculture , Methane , Seasons , Soil , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...