Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(19): 24631-24640, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698546

ABSTRACT

Developing methane utilization technologies is desired to convert abundant and renewable carbon resources, such as natural gas and biogas, into value-added chemical products. This study provides insights into emerging photoelectrochemical (PEC) technology for the photocatalytic transformation of methane to C2H6 and H2 using visible light at room temperature. The PEC conversion of methane to oxygenates has been investigated in aqueous electrolytes. Herein, we demonstrate the gas-phase PEC methane conversion using a proton exchange membrane (PEM) as a solid polymer electrolyte and a gas-diffusion photoanode for methane oxidation. Tungsten trioxide (WO3), a semiconductor photocatalyst responsive to visible light, is utilized as the photoanode material. Ultraviolet light (∼365 nm) excitation predominantly results in CO2 production with lower C2H6 selectivity in humidified methane. In contrast, visible light (∼453 nm) effectively promotes C2H6 production over the WO3 photoanode, attributed to preferential hydroxyl radical (•OH) formation compared to UV irradiation. Photogenerated holes formed near the valence band maximum of WO3 contribute to •OH formation through a single-electron water oxidation. The photogenerated •OH activates gaseous methane molecules to methyl radicals, subsequently coupled into C2H6 at the gas-electrolyte-semiconductor boundary. H2 is concurrently formed on the cathode electrocatalyst. Improving the selectivity for the dehydrogenative coupling of methane is pivotal for enhancing the energy efficiency in the PEM-PEC system.

2.
Biophys J ; 122(13): 2707-2726, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37226441

ABSTRACT

The zipper model has been dominantly used to describe the driving mechanism of the engulfment process and its specific identification of antigens during phagocytosis in macrophages. However, the abilities and limitations of the zipper model, capturing the process as an irreversible reaction, have not been examined yet under the critical conditions of engulfment capacity. Here, we demonstrated the phagocytic behavior of macrophages after reaching the maximum engulfment capacity by tracking the progression of their membrane extension during engulfment using IgG-coated nondigestible polystyrene beads and glass microneedles. The results showed that, after macrophages reached their maximum engulfment capacity, they induced membrane backtracking (the reverse phenomenon of engulfment) in both polystyrene beads and glass microneedles, regardless of the difference in the shape of these antigens. We evaluated the correlation of engulfment in simultaneous stimulations of two IgG-coated microneedles and found that each microneedle was regurgitated by the macrophage independently of the advancement or backtracking of membranes on the other microneedle. Moreover, assessing the total engulfment capacity determined by the maximum amount the macrophage was capable of engulfing when imposing each antigen geometry showed that the capacity increased as the attached antigen areas increased. These results indicate that the mechanism of engulfment should imply the following: 1) macrophages have a backtracking function to recover their phagocytic activity after reaching maximal engulfment limit, 2) both phagocytosis and backtracking are local phenomena of the macrophage membrane that operates independently, and 3) the maximum engulfment capacity is determined not only by mere local cell membrane capacity but also by the whole-cell volume increase during simultaneous phagocytosis of multiple antigens by the single macrophages. Thus, the phagocytic activity may entail a hidden backtracking function, adding to the conventionally known irreversible zipper-like ligand-receptor binding mechanism during membrane progression to recover the macrophages that are saturated from engulfing targets beyond their capacity.


Subject(s)
Macrophages , Polystyrenes , Phagocytosis , Cell Membrane , Immunoglobulin G
3.
Org Lett ; 21(6): 1612-1616, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30789738

ABSTRACT

An efficient synthetic route to ( E)-1,3-bissilyl-6-arylfulvenes has been developed. The reaction of aryl iodides with trimethylsilylacetylene in the presence of a catalytic amount of PdBr2 gives 6-aryl-1,3-bis(trimethylsilyl)fulvenes in good to excellent yields with complete regio- and stereoselectivity. The reaction involves trimerization of trimethylsilylacetylene and cleavage of one silyl group. The silylated fulvenes obtained could be converted into halogenated fulvenes by site-selective halodesilylation. The halogenated fulvenes underwent the Stille coupling leading to the corresponding arylated fulvenes.

SELECTION OF CITATIONS
SEARCH DETAIL