Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35889378

ABSTRACT

Extra-virgin olive oils contain many bioactive substances that are phenolic compounds. The survival of Arcobacter-like strains in non-buffered (WEOO) and buffered (BEOO) extracts of olive oils were studied. Time kill curves of different strains were measured in the environment of olive oil extracts of different grades. The activity of the extracts was also monitored for biofilm formation using the Christensen method. In vitro results revealed that extra-virgin olive oil extracts exhibited the strongest antimicrobial effects, especially non-buffered extracts, which exhibited strain inhibition after only 5 min of exposure. The weakest inhibitory effects were observed for olive oil extracts. A decrease in biofilm formation was observed in the environment of higher WEOO concentrations, although at lower concentrations of extracts, increased biofilm formation occurred due to stress conditions. The dialdehydic forms of oleuropein derivatives, hydroxytyrosol, and tyrosol were the main compounds detected by HPLC-CoulArray. The results indicate that not all olive oils had a similar bactericidal effect, and that bioactivity primarily depended on the content of certain phenolic compounds.


Subject(s)
Arcobacter , Biofilms , Olive Oil/analysis , Phenols/analysis , Phenols/pharmacology , Plankton , Plant Oils/pharmacology , Water
2.
Antibiotics (Basel) ; 11(1)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35052964

ABSTRACT

The purpose of this study was to test the in vitro effects of ampicillin, ciprofloxacin, clindamycin, erythromycin, gentamicin, and tetracycline on planktonic cells of Arcobacter-like microorganisms and on their biofilm formation ability. The minimum inhibitory concentrations (MICs) were determined by the microdilution method. Further, biofilm formation ability in the presence of various concentrations of antibiotics was evaluated by a modified Christensen method. Most of the 60 strains exhibited high susceptibility to gentamicin (98.3%), ciprofloxacin (95.0%), and erythromycin (100.0%). High level of resistance was observed to clindamycin and tetracycline with MIC50 and MIC90 in range of 4-32 mg/L and 32-128 mg/L, respectively. Combined resistance to both clindamycin and tetracycline was found in 38.3% of tested strains. In general, higher biofilm formation was observed especially at lower concentrations of antibiotics (0.13-2 mg/L). However, a significant decrease in biofilm formation ability of Pseudarcobacter defluvii LMG 25694 was exhibited with ampicillin and clindamycin at concentrations above 32 or 8 mg/L, respectively. Biofilm formation represents a potential danger of infection and also a risk to human health, in particular due to antimicrobial-resistant strains and the ability to form a biofilm structure at a concentration that is approximately the MIC determined for planktonic cells.

3.
Microorganisms ; 9(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34683338

ABSTRACT

Campylobacter jejuni is the most frequent cause of bacterial gastrointestinal food-borne infection worldwide. The transmission of Campylobacter and Arcobacter-like species is often made possible by their ability to adhere to various abiotic surfaces. This study is focused on monitoring the biofilm ability of 69 strains of Campylobacter spp. and lesser described species of the Arcobacteraceae family isolated from food, water, and clinical samples within the Czech Republic. Biofilm formation was monitored and evaluated under an aerobic/microaerophilic atmosphere after cultivation for 24 or 72 h depending on the surface material. An overall higher adhesion ability was observed in arcobacters. A chi-squared test showed no association between the origin of the strains and biofilm activity (p > 0.05). Arcobacter-like species are able to form biofilms under microaerophilic and aerobic conditions; however, they prefer microaerophilic environments. Biofilm formation has already been demonstrated at refrigerator temperatures (5 °C). Arcobacters also showed higher biofilm formation ability at the temperature of 30 °C. This is in contrast to Campylobacter jejuni NP 2896, which showed higher biofilm formation ability at temperatures of 5-30 °C. Overall, the results demonstrated the biofilm formation ability of many strains, which poses a considerable risk to the food industry, medical practice, and human health.

4.
Molecules ; 25(23)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266263

ABSTRACT

Hydrolates obtained via the hydrodistillation and steam distillation of Lavandulaangustifolia Mill., Syzygiumaromaticum L., Foeniculumvulgare Mill., and Laurusnobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.


Subject(s)
Anti-Infective Agents/pharmacology , Arcobacter/drug effects , Candida albicans/drug effects , Lavandula/chemistry , Lung Neoplasms/drug therapy , Oils, Volatile/pharmacology , Plant Oils/pharmacology , A549 Cells , Cell Proliferation , Distillation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...