Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ISME J ; 10(2): 450-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26262817

ABSTRACT

We investigated the role of N2-fixation by the colony-forming cyanobacterium, Aphanizomenon spp., for the plankton community and N-budget of the N-limited Baltic Sea during summer by using stable isotope tracers combined with novel secondary ion mass spectrometry, conventional mass spectrometry and nutrient analysis. When incubated with (15)N2, Aphanizomenon spp. showed a strong (15)N-enrichment implying substantial (15)N2-fixation. Intriguingly, Aphanizomenon did not assimilate tracers of (15)NH4(+) from the surrounding water. These findings are in line with model calculations that confirmed a negligible N-source by diffusion-limited NH4(+) fluxes to Aphanizomenon colonies at low bulk concentrations (<250 nm) as compared with N2-fixation within colonies. No N2-fixation was detected in autotrophic microorganisms <5 µm, which relied on NH4(+) uptake from the surrounding water. Aphanizomenon released about 50% of its newly fixed N2 as NH4(+). However, NH4(+) did not accumulate in the water but was transferred to heterotrophic and autotrophic microorganisms as well as to diatoms (Chaetoceros sp.) and copepods with a turnover time of ~5 h. We provide direct quantitative evidence that colony-forming Aphanizomenon releases about half of its recently fixed N2 as NH4(+), which is transferred to the prokaryotic and eukaryotic plankton forming the basis of the food web in the plankton community. Transfer of newly fixed nitrogen to diatoms and copepods furthermore implies a fast export to shallow sediments via fast-sinking fecal pellets and aggregates. Hence, N2-fixing colony-forming cyanobacteria can have profound impact on ecosystem productivity and biogeochemical processes at shorter time scales (hours to days) than previously thought.


Subject(s)
Ammonium Compounds/metabolism , Aphanizomenon/metabolism , Diatoms/metabolism , Nitrogen Fixation , Plankton/metabolism , Seawater/microbiology , Aphanizomenon/growth & development , Diatoms/growth & development , Ecosystem , Food Chain , Heterotrophic Processes , Nitrogen/metabolism , Plankton/growth & development , Seasons
2.
FEMS Microbiol Ecol ; 91(12)2015 Dec.
Article in English | MEDLINE | ID: mdl-26511856

ABSTRACT

Aphanizomenon is a widespread genus of nitrogen (N2)-fixing cyanobacteria in lakes and estuaries, accounting for a large fraction of the summer N2-fixation in the Baltic Sea. However, information about its cell-specific carbon (C)- and N2-fixation rates in the early growth season has not previously been reported. We combined various methods to study N2-fixation, photosynthesis and respiration in field-sampled Baltic Sea Aphanizomenon sp. during early summer at 10°C. Stable isotope incubations at in situ light intensities during 24 h combined with cell-specific secondary ion mass spectrometry showed an average net N2-fixation rate of 55 fmol N cell(-1) day(-1). Dark net N2-fixation rates over a course of 12 h were 20% of those measured in light. C-fixation, but not N2-fixation, was inhibited by high ambient light intensities during daytime. Consequently, the C:N fixation ratio varied substantially over the diel cycle. C- and N2-fixation rates were comparable to those reported for Aphanizomenon sp. in August at 19°C, using the same methods. High respiration rates (23% of gross photosynthesis) were measured with (14)C-incubations and O2-microsensors, and presumably reflect the energy needed for high N2-fixation rates. Hence, Aphanizomenon sp. is an important contributor to N2-fixation at low in situ temperatures in the early growth season.


Subject(s)
Aphanizomenon/metabolism , Carbon Cycle/physiology , Nitrogen Fixation/physiology , Seawater/microbiology , Water Microbiology , Aphanizomenon/classification , Aphanizomenon/isolation & purification , Baltic States , Carbon/metabolism , Cold Temperature , Isotope Labeling , Light , Mass Spectrometry , Nitrogen/metabolism , Photosynthesis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL