Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(26): e2300793, 2023 10.
Article in English | MEDLINE | ID: mdl-37379021

ABSTRACT

Uncontrolled bone morphogenetic protein-2 (BMP-2) release can lead to off-target bone growth and other adverse events. To tackle this challenge, yeast surface display is used to identify unique BMP-2-specific protein binders known as affibodies that bind to BMP-2 with different affinities. Biolayer interferometry reveals an equilibrium dissociation constant of 10.7 nm for the interaction between BMP-2 and high-affinity affibody and 34.8 nm for the interaction between BMP-2 and the low-affinity affibody. The low-affinity affibody-BMP-2 interaction also exhibits an off-rate constant that is an order of magnitude higher. Computational modeling of affibody-BMP-2 binding predicts that the high- and low-affinity affibodies bind to two distinct sites on BMP-2 that function as different cell-receptor binding sites. BMP-2 binding to affibodies reduces expression of the osteogenic marker alkaline phosphatase (ALP) in C2C12 myoblasts. Affibody-conjugated polyethylene glycol-maleimide hydrogels increase uptake of BMP-2 compared to affibody-free hydrogels, and high-affinity hydrogels exhibit lower BMP-2 release into serum compared to low-affinity hydrogels and affibody-free hydrogels over four weeks. Loading BMP-2 into affibody-conjugated hydrogels prolongs ALP activity of C2C12 myoblasts compared to soluble BMP-2. This work demonstrates that affibodies with different affinities can modulate BMP-2 delivery and activity, creating a promising approach for controlling BMP-2 delivery in clinical applications.


Subject(s)
Biocompatible Materials , Bone Morphogenetic Protein 2 , Bone Morphogenetic Protein 2/metabolism , Biocompatible Materials/chemistry , Osteogenesis , Signal Transduction , Myoblasts/metabolism , Hydrogels/pharmacology , Hydrogels/metabolism
2.
J Biol Chem ; 298(10): 102446, 2022 10.
Article in English | MEDLINE | ID: mdl-36055407

ABSTRACT

The cell wall is a critical extracellular barrier for bacteria and many other organisms. In bacteria, this structural layer consists of peptidoglycan, which maintains cell shape and structural integrity and provides a scaffold for displaying various protein factors. To attach proteins to the cell wall, Gram-positive bacteria utilize sortase enzymes, which are cysteine transpeptidases that recognize and cleave a specific sorting signal, followed by ligation of the sorting signal-containing protein to the peptidoglycan precursor lipid II (LII). This mechanism is the subject of considerable interest as a target for therapeutic intervention and as a tool for protein engineering, where sortases have enabled sortase-mediated ligation or sortagging strategies. Despite these uses, there remains an incomplete understanding of the stereochemistry of substrate recognition and ligation product formation. Here, we solved the first structures of sortase A from Streptococcus pyogenes bound to two substrate sequences, LPATA and LPATS. In addition, we synthesized a mimetic of the product of sortase-mediated ligation involving LII (LPAT-LII) and solved the complex structure in two ligand conformations. These structures were further used as the basis for molecular dynamics simulations to probe sortase A-ligand dynamics and to construct a model of the acyl-enzyme intermediate, thus providing a structural view of multiple key states in the catalytic mechanism. Overall, this structural information provides new insights into the recognition of the sortase substrate motif and LII ligation partner and will support the continued development of sortases for protein engineering applications.


Subject(s)
Aminoacyltransferases , Aminoacyltransferases/chemistry , Aminoacyltransferases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ligands , Peptidoglycan , Streptococcus pyogenes/enzymology
3.
Protein Sci ; 31(3): 701-715, 2022 03.
Article in English | MEDLINE | ID: mdl-34939250

ABSTRACT

Sequence variation in related proteins is an important characteristic that modulates activity and selectivity. An example of a protein family with a large degree of sequence variation is that of bacterial sortases, which are cysteine transpeptidases on the surface of gram-positive bacteria. Class A sortases are responsible for attachment of diverse proteins to the cell wall to facilitate environmental adaption and interaction. These enzymes are also used in protein engineering applications for sortase-mediated ligations (SML) or sortagging of protein targets. We previously investigated SrtA from Streptococcus pneumoniae, identifying a number of putative ß7-ß8 loop-mediated interactions that affected in vitro enzyme function. We identified residues that contributed to the ability of S. pneumoniae SrtA to recognize several amino acids at the P1' position of the substrate motif, underlined in LPXTG, in contrast to the strict P1' Gly recognition of SrtA from Staphylococcus aureus. However, motivated by the lack of a structural model for the active, monomeric form of S. pneumoniae SrtA, here, we expanded our studies to other Streptococcus SrtA proteins. We solved the first monomeric structure of S. agalactiae SrtA which includes the C-terminus, and three others of ß7-ß8 loop chimeras from S. pyogenes and S. agalactiae SrtA. These structures and accompanying biochemical data support our previously identified ß7-ß8 loop-mediated interactions and provide additional insight into their role in Class A sortase substrate selectivity. A greater understanding of individual SrtA sequence and structural determinants of target selectivity may also facilitate the design or discovery of improved sortagging tools.


Subject(s)
Aminoacyltransferases , Aminoacyltransferases/chemistry , Bacterial Proteins/chemistry , Chimera/metabolism , Cysteine Endopeptidases/chemistry , Streptococcus pyogenes/metabolism
4.
J Biol Chem ; 297(2): 100981, 2021 08.
Article in English | MEDLINE | ID: mdl-34302812

ABSTRACT

Gram-positive bacteria contain sortase enzymes on their cell surfaces that catalyze transpeptidation reactions critical for proper cellular function. In vitro, sortases are used in sortase-mediated ligation (SML) reactions for a variety of protein engineering applications. Historically, sortase A from Staphylococcus aureus (saSrtA) has been the enzyme of choice to catalyze SML reactions. However, the stringent specificity of saSrtA for the LPXTG sequence motif limits its uses. Here, we describe the impact on substrate selectivity of a structurally conserved loop with a high degree of sequence variability in all classes of sortases. We investigate the contribution of this ß7-ß8 loop by designing and testing chimeric sortase enzymes. Our chimeras utilize natural sequence variation of class A sortases from eight species engineered into the SrtA sequence from Streptococcus pneumoniae. While some of these chimeric enzymes mimic the activity and selectivity of the WT protein from which the loop sequence was derived (e.g., that of saSrtA), others results in chimeric Streptococcus pneumoniae SrtA enzymes that are able to accommodate a range of residues in the final position of the substrate motif (LPXTX). Using mutagenesis, structural comparisons, and sequence analyses, we identify three interactions facilitated by ß7-ß8 loop residues that appear to be broadly conserved or converged upon in class A sortase enzymes. These studies provide the foundation for a deeper understanding of sortase target selectivity and can expand the sortase toolbox for future SML applications.


Subject(s)
Aminoacyltransferases/chemistry , Bacterial Proteins/chemistry , Catalytic Domain , Cysteine Endopeptidases/chemistry , Mutation , Protein Engineering/methods , Staphylococcal Infections/enzymology , Staphylococcus aureus/enzymology , Amino Acid Sequence , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/chemistry , Staphylococcus aureus/isolation & purification , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...