Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Ecology ; 97(11): 3243, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27870054

ABSTRACT

This dataset provides growth form classifications for 67,413 vascular plant species from North, Central, and South America. The data used to determine growth form were compiled from five major integrated sources and two original publications: the Botanical Information and Ecology Network (BIEN), the Plant Trait Database (TRY), the SALVIAS database, the USDA PLANTS database, Missouri Botanical Garden's Tropicos database, Wright (2010), and Boyle (1996). We defined nine plant growth forms based on woodiness (woody or non-woody), shoot structure (self-supporting or not self-supporting), and root traits (rooted in soil, not rooted in soil, parasitic or aquatic): Epiphyte, Liana, Vine, Herb, Shrub, Tree, Parasite, or Aquatic. Species with multiple growth form classifications were assigned the growth form classification agreed upon by the majority (>2/3) of sources. Species with ambiguous or otherwise not interpretable growth form assignments were excluded from the final dataset but are made available with the original data. Comparisons with independent estimates of species richness for the Western hemisphere suggest that our final dataset includes the majority of New World vascular plant species. Coverage is likely more complete for temperate than for tropical species. In addition, aquatic species are likely under-represented. Nonetheless, this dataset represents the largest compilation of plant growth forms published to date, and should contribute to new insights across a broad range of research in systematics, ecology, biogeography, conservation, and global change science.


Subject(s)
Plant Development , Plants/classification , Central America , Demography , North America , South America , Species Specificity
2.
Oecologia ; 155(1): 143-50, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17965886

ABSTRACT

Competition is believed to be a central force limiting local diversity and controlling the structure of plant communities. However, it has been proposed that the stressed understory environment limits total understory plant density to such low levels that competitive exclusion cannot be an important factor limiting the local diversity of understory plants. To evaluate the importance of inter-seedling competition, we performed a seedling competition experiment with five shade-tolerant species in a tropical moist forest in Panama. Three-month-old seedlings were transplanted into the forest singly or with their roots intertwined with a single conspecific or heterospecific seedling in all pairwise species combinations. If competition is important, performance (survival, stem height, and number of leaves after one and six years) would be expected to be lowest with a conspecific neighbor and greatest without a neighbor. The experiment was replicated in five 0.24-m(2) plots at each of 20 sites in tall secondary forest. To test whether seedling performance differed among treatments we fitted linear mixed models (LMM) and generalized linear mixed models (GLMM), treating species identity and microsite (site and plot) as random effects. The five shade-tolerant study species all experienced good establishment with relatively high survival and growth rates. The neighbor treatment consistently affected seedling performance, but the effect was always very small, both in absolute terms and relative to the much stronger species and microsite effects. Seedlings with a conspecific neighbor consistently performed worse than seedlings with a heterospecific neighbor, but having no neighbor generally did not cause superior performance relative to the other treatments. We conclude that direct competitive interactions are relatively unimportant among understory plants in humid tropical forests.


Subject(s)
Seedlings/physiology , Trees , Biodiversity , Ecosystem , Panama , Plant Leaves/physiology , Seedlings/growth & development , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL