Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
1.
Biochemistry (Mosc) ; 84(9): 1028-1039, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31693462

ABSTRACT

Here, we put forward the hypothesis on the mechanism of functioning of cancer stem cells, provided that they exist. The hypothesis is based on the following postulates. 1) Paracrine exchange between cancer and stromal cells is efficient only if they are in a close contact and form a synapse-like cleft between them for the cell-cell crosstalk. The concentration of paracrine signaling molecules in the cleft is high because of the cleft small volume. 2) Cancer stem cells per se do not exist. Instead, there are cancer stem complexes formed by cancer cells tightly bound to stromal cells (portable niches) that exchange paracrine signals. 3) Cancer stem complex is a complex system with newly emerged properties, such as a stemness and resistance to external impacts, including therapeutic interventions. 4) The stemness manifests itself as the ability of cancer cells within the complex to divide asymmetrically: one daughter cell remains in the complex forming a renewed stem complex, whereas the other daughter cell detaches from the complex and transforms in a non-stem cell capable of differentiation. 5) An increased resistance of a cancer stem complex is due to the integration of its intrinsic defense systems through the exchange of paracrine signals, i.e., represents a microresistance at the cell level. 6) Cancer stem complexes can stochastically dissociate with the formation of non-stem cancer cells. Partially differentiated non-stem cancer cells are able to stochastically bind to the stromal component, dedifferentiate under the action of paracrine signals, and form new cancer stem complexes. Therefore, a tumor is a flexible system existing in the pseudo-equilibrium state. Such systems comply with the Le Chatelier's principle stating that an equilibrium system under the action of external factors activates the processes antagonistic to the changes (homeostasis). This promotes tumor resistance at the level of cell populations, i.e., the macroresistance. 7) The portable niche travels with the cancer cell during metastasis. We propose a general therapeutic strategy targeting the contacts between cancer and stromal cells. The disruption of these contacts should lead to the destruction of cancer stem complexes and elimination of tumors.


Subject(s)
Neoplasms/genetics , Neoplasms/pathology , Stem Cell Niche/physiology , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
2.
Pancreatology ; 19(2): 390-396, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30799278

ABSTRACT

BACKGROUND: Pancreatic cancer stromal cells produce various protein factors, which presumably provide cancer cells with drug resistance and may influence their ability to form metastasis via induction of epithelial-mesenchymal transition (ЕМТ). The goal of our project was to study the effects of IGF-I on expression of protein markers of epithelial and mesenchymal differentiation, and on expression of transcriptional regulators of EMT in pancreatic cancer cell lines. METHODS: We used Western blot analysis to study the expression patterns of epithelial and mesenchymal protein markers in pancreatic cancer cell lines, which have been stimulated with IGF-I for various periods of time. The ELISA technique was employed to determine the concentration of IGF-I in conditioned media. Additionally, the effect of IGF-I on proliferation of pancreatic cancer cells was measured via MTS technique. RESULTS: We investigated the effect of IGF/IGF-IR signaling pathway activation on expression levels of cell differentiation markers in five pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-2, MiaPaCa-2 and Panc1). The IGF-I stimulation led to phosphorylation of IGF-IR and activation of PI-3K/Akt signaling cascade. At the same time our results reveal that the activation of IGF/IGF-IR signaling pathway in pancreatic cancer cells does not induce a significant shift in cell phenotype towards mesenchymal differentiation and does not induce a decrease in expression levels of epithelial protein markers. CONCLUSIONS: Our results demonstrate that IGF-I does not function as an effective inductor of EMT in pancreatic cancer cell lines and that stimulation of IGF-I/IGF-IR signaling pathway does not lead to EMT associated changes in cell differentiation.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Insulin-Like Growth Factor I/metabolism , Pancreatic Neoplasms/metabolism , Receptor, IGF Type 1/metabolism , Biomarkers, Tumor , Cell Differentiation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Insulin-Like Growth Factor I/pharmacology , Transforming Growth Factor beta2/pharmacology
3.
Dokl Biochem Biophys ; 481(1): 208-211, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30168061

ABSTRACT

The expression levels of the SOX9 gene in fetal, postnatal, and neoplastic pancreatic tissues were compared. In the fetal pancreatic samples, the mean relative level of the SOX9 gene expression was 8 times greater than the normal level. The tumor samples were divided into three groups depending on the SOX9 expression level. The first group showed a 6.5-fold increased expression level of SOX9 with respect to the normal one. The second and normal groups had approximately equal levels expression. The third group showed a 25-fold decreased expression level of SOX9. The discrepancy in the SOX9 expression, associated with the predominance of different functions of this master gene, depends on the poorly predictable individual factors and indicates that SOX9 should be excluded from the potential diagnostic biomarkers of pancreatic cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/genetics , SOX9 Transcription Factor/genetics , Embryonic Development/genetics , Fetus/metabolism , Humans
4.
Dokl Biochem Biophys ; 481(1): 217-218, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30168063

ABSTRACT

Stimulation of BxPC-3, Panc-1, and MIA PaCA-2 pancreatic cancer cells with EGF, HGF, FGF-1, FGF-2, FGF-7, and FGF-10 growth factors caused changes in the expression of master genes regulating pancreatic development (SOX9, HNF3b, GATA-4, GATA-6, and HES1). This, in turn, caused changes in the expression profile of important transcription factors, embryonic development regulators. It was also found that the master genes belonging to the same family may cause opposite effects (suppression or enhancement of expression of a particular transcriptional regulator) in the same cell line.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Pancreatic Neoplasms/pathology , Biomarkers, Tumor/genetics , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Line, Tumor , Humans , Pancreatic Neoplasms/genetics
5.
Dokl Biochem Biophys ; 481(1): 219-221, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30168064

ABSTRACT

The mRNA content of the transcription factors KLF5 and ZEB1 was studied in pancreatic tumor tissues and in fetal and normal pancreas. Transcription of these factors was not high and similar in normal and fetal pancreatic tissues but greatly increased in the pancreatic ductal adenocarcinoma tissues. A significant positive correlation between the KLF5 and ZEB1 transcription levels in the pancreatic tumor tissues was observed.


Subject(s)
Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors/genetics , Pancreatic Neoplasms/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Adult , Humans , Male , Pancreatic Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Pancreatic Neoplasms
6.
Dokl Biochem Biophys ; 480(1): 158-161, 2018 May.
Article in English | MEDLINE | ID: mdl-30008100

ABSTRACT

An artificial double tandem tumor-specific promoter based on survivin and human telomerase reverse transcriptase gene promoters was constructed. Studies in in vitro and ex vivo therapeutic systems showed that the designed promoter exhibits a high activity in tumor cells, which is comparable to the activity of the CMV constitutive promoter.


Subject(s)
Cytomegalovirus/genetics , Genetic Therapy , Inhibitor of Apoptosis Proteins/genetics , Neoplasms/genetics , Neoplasms/therapy , Promoter Regions, Genetic , Cell Line, Tumor , Humans , Neoplasms/pathology , Survivin
7.
Biochemistry (Mosc) ; 83(4): 370-380, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29626924

ABSTRACT

The review is devoted to unsolvable problems of biology. 1) Problems unsolvable due to stochastic mutations occurring during DNA replication that make it impossible to create two identical organisms or even two identical complex cells (Sverdlov, E. D. (2009) Biochemistry (Moscow), 74, 939-944) and to "defeat" cancer. 2) Problems unsolvable due to multiple interactions in complex systems leading to the appearance of unpredictable emergent properties that prevent establishment of unambiguous relationships between the genetic architecture and phenotypic manifestation of the genome and make impossible to predict with certainty responses of the organism, its parts, or pathological processes to external factors. 3) Problems unsolvable because of the uncertainty principle and observer effect in biology, due to which it is impossible to obtain adequate information about cells in their tissue microenvironment by isolating and analyzing individual cells. In particular, we cannot draw conclusions on the properties of stem cells in their niches based on the properties of stem cell cultures. A strategy is proposed for constructing the pattern most closely approximated to the relationship of genotypes with their phenotypes by designing networks of intermediate phenotypes (endophenotypes).


Subject(s)
Genome/genetics , Genotype , Mutation , Neoplasms/genetics , Uncertainty , Endophenotypes , Humans , Neoplasms/pathology , Stochastic Processes
8.
Dokl Biochem Biophys ; 483(1): 326-328, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30607731

ABSTRACT

In this study, we evaluated the antitumor activity of a gene therapy complex in which the tumor-specific control of the expression of the effector suicide gene FCU1 was performed using a two-vector system based on the site-specific Cre-LoxP recombinase system. The complex of interest showed a high therapeutic potential in a mouse colon adenocarcinoma model.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Genes, Transgenic, Suicide , Genetic Vectors , Integrases , Neoplasms, Experimental , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/therapy , Animals , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/therapy , Genetic Vectors/genetics , Genetic Vectors/metabolism , Integrases/genetics , Integrases/metabolism , Mice, Inbred BALB C , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/therapy
9.
Dokl Biochem Biophys ; 475(1): 259-263, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28864896

ABSTRACT

Exogenous expression of the gene encoding the pancreatic master regulator PDX1 in cell lines with different degrees of differentiation of pancreatic cancer cells is accompanied by changes in the expression of known master genes involved in cancer progression. In BxPC3PDX+ cells, as compared to BxPC3PDX-, we detected an increased expression of the following genes: NKX6.1 (2 times), NR5A2 (2.5 times), KLF5 (1.8 times), ZEB1 (3 times), and ONECUT1 (1.3 times), as well as a decreased expression of MUC1 and SLUG genes (3 and 2 times, respectively). In PANC1PDX+ cells, as compared to the control PANC1PDX- cells, we detected a decreased expression of ISL1 (2 times) and an increased expressed of KRT8 (2 times) and MUC1 (by 30%). In the high-grade cell lines (including the BxPC3 line studied), the total content of sites containing the marks of active enhancers was higher than that in the low-grade cell lines (PANC1).


Subject(s)
Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Intracellular Space/metabolism , Pancreatic Neoplasms/pathology , Trans-Activators/genetics , Trans-Activators/metabolism , Cell Differentiation , Cell Line, Tumor , Disease Progression , Humans
10.
Dokl Biochem Biophys ; 475(1): 250-252, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28864900

ABSTRACT

The expression level of some important master regulators of embryonic development of the pancreas in the tumor samples of this human organ was determined. We found that the transcription of SOX9, GATA4, PDX1, PTF1a, and HNF1b genes in the tumor samples was reduced as compared to the samples of normal pancreatic tissues, and the KLF5 gene expression in the tumor cells was elevated. We assume that all the studied genes, except KLF5, form a single regulatory module that supports the identity of tumor progenitor cells. A simultaneous suppression of expression of these master factors may be critical for the neoplastic transformation of pancreatic cells.


Subject(s)
Gene Expression Regulation, Developmental , Pancreatic Neoplasms/embryology , Pancreatic Neoplasms/genetics , Humans , Pancreas/embryology , Pancreatic Neoplasms/pathology
11.
Dokl Biochem Biophys ; 475(1): 267-270, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28864901

ABSTRACT

The expression level of six transcription factor genes and the content of their protein products in five pancreatic cancer cell lines with parallel control of expression of three marker genes reflecting epithelial or mesenchymal state of cells was investigated. Cell lines MIA PaCa-2 and Capan-2 represented the best models of quasi-mesenchymal and epithelial, respectively, types of progression of the pancreatic ductal adenocarcinoma, according to the content of E-cadherin and vimentin and the expression of KLF5 and ZEB1 transcription factors.


Subject(s)
Disease Progression , Gene Expression Profiling , Pancreatic Neoplasms/pathology , Transcription Factors/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Staging
12.
Biochemistry (Mosc) ; 82(8): 887-893, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28941456

ABSTRACT

Multifunctional activity of the PDX1 gene product is reviewed. The PDX1 protein is unique in that being expressed exclusively in the pancreas it exhibits various functional activities in this organ both during embryonic development and during induction and progression of pancreatic cancer. Hence, PDX1 belongs to the family of master regulators with multiple and often antagonistic functions.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Homeodomain Proteins/metabolism , Pancreas/metabolism , Pancreatic Neoplasms/pathology , Trans-Activators/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Disease Progression , Embryonic Development , Humans , Pancreas/growth & development , Pancreatic Neoplasms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , ras Proteins/genetics , ras Proteins/metabolism
13.
Biomed Khim ; 63(3): 211-218, 2017 May.
Article in Russian | MEDLINE | ID: mdl-28781254

ABSTRACT

Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.


Subject(s)
Enteroendocrine Cells/metabolism , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Developmental , Organogenesis/genetics , Pancreas/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Animals , Cell Differentiation , Cell Lineage/genetics , Enteroendocrine Cells/cytology , Fibroblast Growth Factors/classification , Fibroblast Growth Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Pancreas/cytology , Pancreas/growth & development , Receptor, Fibroblast Growth Factor, Type 1/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Hum Gene Ther Methods ; 28(5): 247-254, 2017 10.
Article in English | MEDLINE | ID: mdl-28446024

ABSTRACT

A set of vectors for Cre recombinase-dependent expression of the hybrid suicidal FCU1 transgene was constructed, including a two-plasmid system wherein the FCU1 and Cre transgenes reside in separate vectors, and single-plasmid variants in which a single plasmid bears both transgenes. To improve the safety profile and specificity in cancer gene therapy applications, as well as to ensure stable propagation of plasmids in bacterial cells, the Cre/LoxP system components were optimized. A bicistronic vector with the Cre expression cassette placed between the LoxP sites unidirectionally with FCU1 cDNA resulted in higher therapeutic efficiency compared with the double-plasmid system in an enzyme-prodrug suicide cancer gene therapy scheme. Therefore, the feasibility of a single-plasmid approach in the development of cancer gene therapy with hierarchical enhancement of therapeutic transgene expression has been demonstrated.


Subject(s)
Genetic Therapy/methods , Genetic Vectors/metabolism , Integrases/genetics , Transgenes/genetics , Cell Line, Tumor , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Humans , Neoplasms/therapy , Pentosyltransferases/genetics , Pentosyltransferases/metabolism
15.
Biomed Khim ; 62(6): 622-629, 2016 Nov.
Article in Russian | MEDLINE | ID: mdl-28026804

ABSTRACT

Fibroblast growth factors belong to a family of growth factors that are involved in various processes in organism and have a wide range of biological functions. Specifically for pancreas, FGFs are important during both organogenesis and carcinogenesis. One of the main characteristic of pancreatic cancer, is it close interaction between cancer and stromal cells via different factors, including FGF. Pathological changes in FGF/FGFR signaling pathway is a complex process. The remodeling effects and stimulation of tumor growth are mostly depend not only on types of receptors, but also from their isoforms. FGF/FGFR signaling pathway is a perspective specific marker for cancer progression, and a potential drug target, which can be used for treatment of pancreatic cancer.


Subject(s)
Fibroblast Growth Factors/metabolism , Neoplasm Proteins/metabolism , Pancreatic Neoplasms/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Animals , Humans , Pancreatic Neoplasms/therapy
16.
Dokl Biochem Biophys ; 470(1): 345-348, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27817015

ABSTRACT

Antitumor efficacy of the combined suicide gene therapy and radiotherapy was studied on the model of CT26 murine colon adenocarcinoma. CMV-FCU1-IRES-mGM-CSF-pGL3 construct with PEG-PEI-TAT (FCU1-mGM/5-FC) block copolymer as a vector was used for intratumoral administration. Tumors were irradiated with a single 5 Gy dose. The efficacy was evaluated according to the grade of tumor growth inhibition (T/C) and lifespan of the animals. Pronounced antitumor activity of the combined use of FCU1-mGM/5-FC system with radiotherapy on the background of prolonged lifespan and the synergism of the applied methods was revealed.


Subject(s)
Adenocarcinoma/therapy , Colonic Neoplasms/therapy , Genes, Transgenic, Suicide , Genetic Therapy/methods , Adenocarcinoma/pathology , Animals , Antimetabolites, Antineoplastic/administration & dosage , Cell Line, Tumor , Colonic Neoplasms/pathology , Combined Modality Therapy/methods , Cytomegalovirus/genetics , Flucytosine/administration & dosage , Fluorouracil/administration & dosage , Genetic Vectors , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Mice, Inbred BALB C , Neoplasm Grading , Neoplasm Transplantation , Treatment Outcome , Tumor Burden
17.
Dokl Biochem Biophys ; 470(1): 319-321, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27817025

ABSTRACT

The fibroblast activation protein (FAP) is selectively expressed in cancer-associated fibroblasts (CAFs) and facilitates tumor progression, which makes this protein an attractive therapeutic target. There are difficulties in obtaining CAFs for studying the function and suppression of FAP. In this work, the expression level of FAP was determined by PCR assay in 25 human cell lines and 8 surgical samples of tumor stroma. The expression of FAP was observed in all tumor stroma samples and in four cell lines: NGP-127, SJCRH30, SJSA-1, and A375. The level of FAP expression in NGP-127, SJCRH30, and SJSA-1 lines as well as in CAFs of patients was comparable, which makes these cell lines a possible model for studying FAP.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Gelatinases/metabolism , Membrane Proteins/metabolism , Neoplasms/metabolism , Serine Endopeptidases/metabolism , Blotting, Western , Cell Line, Tumor , Endopeptidases , Gene Expression , Humans , Neoplasms/surgery , Polymerase Chain Reaction , RNA, Messenger/metabolism , Stromal Cells/metabolism
18.
Bull Exp Biol Med ; 161(6): 808-810, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27783293

ABSTRACT

Hybrid therapeutic gene FCU1 gene was cloned into a lentiviral expression vector and the therapeutic effect of its expression was studied in three pancreatic cancer cell lines. Expression of FCU1 gene sensitized cells of two of three studied pancreatic cancer cell lines to 5-fluorocytosine. In addition, uracil phosphoribosyl transferase activity of the hybrid FCU1 protein increased sensitivity of transfected cells of all three studied pancreatic cancer cell lines to 5-fluorouracil, a standard chemotherapeutic agent.


Subject(s)
Antineoplastic Agents/pharmacology , Cytosine Deaminase/genetics , Insulin-Secreting Cells/drug effects , Pentosyltransferases/genetics , Recombinant Fusion Proteins/genetics , Cell Line, Tumor , Cytosine Deaminase/metabolism , Drug Resistance, Neoplasm , Flucytosine/metabolism , Flucytosine/pharmacology , Fluorouracil/pharmacology , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Lentivirus/genetics , Lentivirus/metabolism , Pentosyltransferases/metabolism , Plasmids/chemistry , Plasmids/metabolism , Recombinant Fusion Proteins/metabolism , Transduction, Genetic
19.
Dokl Biochem Biophys ; 469(1): 257-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27599506

ABSTRACT

We show characteristic morphological changes corresponding to epithelial-mesenchymal transition (EMT) program fulfillment in PANC1 cell line stimulated with TGFß1. Our results support downregulation of E-cadherin protein. We show 5- and 28-fold increase in SNAI1 and SNAI2 expression levels and 25- and 15-fold decrease in CDH1 and KRT8 expression levels, respectively, which confirms the EMT-program fulfillment. We demonstrate downregulation of expression of pancreatic master genes SOX9, FOXA2, and GATA4 (2-, 5-, and 4-fold, respectively) and absence of significant changes in HES1, NR5A2, and GATA6 expression levels in the cells stimulated with TGFß1. Our results indicate the absence of induction of expression of PTF1A, PDX1, HNF1b, NEUROG3, RPBJL, NKX6.1, and ONECUT1 genes, which are inactive in PANC1 cell line after the EMT stimulated by TGFß1.


Subject(s)
Adenocarcinoma/metabolism , Epithelial-Mesenchymal Transition/physiology , GATA4 Transcription Factor/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Pancreatic Neoplasms/metabolism , SOX9 Transcription Factor/metabolism , Adenocarcinoma/pathology , Antigens, CD , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Down-Regulation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , GATA4 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic/physiology , Hepatocyte Nuclear Factor 3-beta/genetics , Humans , Keratin-8/genetics , Keratin-8/metabolism , Mesoderm/metabolism , Mesoderm/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , SOX9 Transcription Factor/genetics , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Transforming Growth Factor beta1/administration & dosage , Transforming Growth Factor beta1/metabolism
20.
Biochemistry (Mosc) ; 81(7): 731-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27449619

ABSTRACT

Cancer is a complex system. Tumor complexity is determined not only by genetic and epigenetic heterogeneity, but also by a huge number of interactions between cancer and normal cells. The heterogeneity and complexity of a tumor causes failure of molecular targeting therapy as a tool for fighting cancer. This review considers the concepts of malignant tumors as organisms that have common characteristics despite all heterogeneity. This leads to the idea that one of the most promising strategies for fighting cancer is the use of the patient's immune system.


Subject(s)
Neoplasms/pathology , Cell Proliferation , Humans , Neoplasm Metastasis , Neoplasms/metabolism , Neoplasms/therapy , Neovascularization, Pathologic , Tumor Microenvironment , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...