Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 12(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35455029

ABSTRACT

Bacteria can bind on clothes, but the impacts of textiles leachables on cutaneous bacteria remain unknown. Here, we studied for the first time the effects of cotton and flax obtained through classical and soft ecological agriculture on the representatives S. aureus and S. epidermidis bacteria of the cutaneous microbiota. Crude flax showed an inhibitory potential on S. epidermidis bacterial lawns whereas cotton had no effect. Textile fiber leachables were produced in bacterial culture media, and these extracts were tested on S. aureus and S. epidermidis. Bacterial growth was not impacted, but investigation by the crystal violet technique and confocal microscopy showed that all extracts affected biofilm formation by the two staphylococci species. An influence of cotton and flax culture conditions was clearly observed. Flax extracts had strong inhibitory impacts and induced the formation of mushroom-like defense structures by S. aureus. Conversely, production of biosurfactant by bacteria and their surface properties were not modified. Resistance to antibiotics also remained unchanged. All textile extracts, and particularly soft organic flax, showed strong inhibitory effects on S. aureus and S. epidermidis cytotoxicity on HaCaT keratinocytes. Analysis of flax leachables showed the presence of benzyl alcohol that could partly explain the effects of flax extracts.

2.
J Appl Toxicol ; 33(5): 357-63, 2013 May.
Article in English | MEDLINE | ID: mdl-22025267

ABSTRACT

The persistence of mycotoxins and their metabolites in agricultural products is a major safety concern because of their high resistance to all kinds of decontamination techniques. In this study, we evaluated the effectiveness of the pulsed light technology for the degradation of mycotoxins. We report that eight flashes of pulsed light destroyed of 84.5 ± 1.9, 72.5 ± 1.1, 92.7 ± 0.8 and 98.1 ± 0.2% of zearalenone, deoxynivalenol, aflatoxin B1 and ochratoxin in solution. The degradation of the molecules was monitored by HPLC and LC-MS/MS analysis. We estimated the potential toxicity of zearalenone and deoxynivelenol after exposure to a pulsed light treatment using the Caenorhabditis elegans survival tests. The genotoxicity of aflatoxin B1 was also investigated using a complete Ames test. The results show that the treatment of zearalenone and deoxynivelenol by single or multiple flashes of pulsed light is associated with a stagnation or marginal decrease of the toxicity of the mycotoxins and that treatment of aflatoxin B1 by pulsed light can completely eliminate the mutagenic potential of this mycotoxin. This work provides the first demonstration of a nonthermal technology allowing mycotoxin destruction and inactivation of their mutagenic activity.


Subject(s)
Aflatoxin B1/chemistry , Ochratoxins/chemistry , Trichothecenes/chemistry , Zearalenone/chemistry , Aflatoxin B1/radiation effects , Chromatography, High Pressure Liquid , Chromatography, Liquid , Ochratoxins/radiation effects , Tandem Mass Spectrometry , Trichothecenes/radiation effects , Zearalenone/radiation effects
3.
Gut Pathog ; 2(1): 16, 2010 Nov 27.
Article in English | MEDLINE | ID: mdl-21110894

ABSTRACT

BACKGROUND: Pseudomonas fluorescens has long been considered as a psychrotrophic microorganism. Recently, we have shown that clinical strains of P. fluorescens (biovar 1) are able to adapt at a growth temperature of 37°C or above and induce a specific inflammatory response. Interestingly, a highly specific antigen of P. fluorescens, I2, is detected in the serum of patients with Crohn's disease but the possible role of this bacterium in the disease has not yet been explored. In the present study, we examined the ability of a psychrotrophic and a clinical strain of P. fluorescens to modulate the permeability of a Caco-2/TC7 intestinal epithelial model, reorganize the actin cytoskeleton, invade the target cells and translocate across the epithelium. The behaviour of these two strains was compared to that of the well known opportunistic pathogen P. aeruginosa PAO1. RESULTS: Both strains of P. fluorescens were found to decrease the transepithelial resistance (TER) of Caco-2/TC7 differentiated monolayers. This was associated with an increase in paracellular permeability and F-actin microfilaments rearrangements. Moreover, the invasion and translocation tests demonstrated that the two strains used in this study can invade and translocate across the differentiated Caco-2/TC7 cell monolayers. CONCLUSIONS: The present work shows for the first time, that P. fluorescens is able to alter the intestinal epithelial barrier function by disorganizing the F-actin microfilament network. Moreover, we reveal that independently of their origins, the two P. fluorescens strains can translocate across differentiated Caco-2/TC7 cell monolayers by using the transcellular pathway. These findings could, at least in part, explain the presence of the P. fluorescens specific I2 antigen in the serum of patients with Crohn's disease.

4.
BMC Microbiol ; 10: 215, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20698984

ABSTRACT

BACKGROUND: Pseudomonas fluorescens is present in low number in the intestinal lumen and has been proposed to play a role in Crohn's disease (CD). Indeed, a highly specific antigen, I2, has been detected in CD patients and correlated to the severity of the disease. We aimed to determine whether P. fluorescens was able to adhere to human intestinal epithelial cells (IECs), induce cytotoxicity and activate a proinflammatory response. RESULTS: Behaviour of the clinical strain P. fluorescens MFN1032 was compared to that of the psychrotrophic strain P. fluorescens MF37 and the opportunistic pathogen P. aeruginosa PAO1. Both strains of P. fluorescens were found to adhere on Caco-2/TC7 and HT-29 cells. Their cytotoxicity towards these two cell lines determined by LDH release assays was dose-dependent and higher for the clinical strain MFN1032 than for MF37 but lower than P. aeruginosa PAO1. The two strains of P. fluorescens also induced IL-8 secretion by Caco-2/TC7 and HT-29 cells via the AP-1 signaling pathway whereas P. aeruginosa PAO1 potentially used the NF-kappaB pathway. CONCLUSIONS: The present work shows, for the first time, that P. fluorescens MFN1032 is able to adhere to IECs, exert cytotoxic effects and induce a proinflammatory reaction. Our results are consistent with a possible contribution of P. fluorescens in CD and could explain the presence of specific antibodies against this bacterium in the blood of patients.


Subject(s)
Epithelial Cells/immunology , Interleukin-8/immunology , Intestines/immunology , Pseudomonas Infections/immunology , Pseudomonas fluorescens/immunology , Signal Transduction , Transcription Factor AP-1/immunology , Bacterial Adhesion , Caco-2 Cells , Cytotoxicity, Immunologic , Epithelial Cells/microbiology , HT29 Cells , Humans , Intestines/microbiology , NF-kappa B/immunology , Pseudomonas Infections/microbiology , Pseudomonas fluorescens/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...