Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Exp Med Biol ; 1391: 221-241, 2022.
Article in English | MEDLINE | ID: mdl-36472825

ABSTRACT

Multiple cellular processes are regulated by oxygen radicals or reactive oxygen species (ROS) where they play crucial roles as primary or secondary messengers, particularly during cell proliferation, differentiation, and apoptosis. Embryogenesis and organogenesis encompass all these processes; therefore, their role during these crucial life events cannot be ignored, more so when there is an imbalance in redox homeostasis. Perturbed redox homeostasis is responsible for damaging the biomolecules such as lipids, proteins, and nucleic acids resulting in leaky membrane, altered protein, enzyme function, and DNA damage which have adverse impact on the embryo and fetal development. In this article, we attempt to summarize the available data in literature for an in-depth understanding of redox regulation during development that may help in optimizing the pregnancy outcome both under natural and assisted conditions.


Subject(s)
Fetal Development , Oxidative Stress , Pregnancy , Humans , Female
2.
Front Cell Dev Biol ; 10: 867057, 2022.
Article in English | MEDLINE | ID: mdl-36211461

ABSTRACT

Bi-directional crosstalk between Ca2+ signaling and ROS modulates physiological processes as a part of a regulatory circuit including sperm function. The role of transient receptor potential vanilloid 1 (TRPV1) in this regard cannot be undermined. This is the first report demonstrating the Ca2+-sensitive TRPV1 channel to be under-expressed in spermatozoa of subfertile men, idiopathic infertile men, and normozoospermic infertile males with high ROS (idiopathic infertility and unilateral varicocele). To study the effect of TRPV1 in determining the fertility outcome, we compared the expression profile of TRPV1 in spermatozoa of male partners who achieved pregnancy by natural conception (NC+, n = 10), IVF (IVF+, n = 23), or ICSI (ICSI +, n = 9) and their respective counterparts with failed pregnancy NC (n = 7), IVF (n = 23), or ICSI (n = 10), by both immunocytochemistry and flow-cytometry. Reduced expression of TRPV1 in sperm of IVF ± and ICSI ± men with respect to that NC+ men imply its role in mediating successful fertilization. Unsuccessful pregnancy outcome with an underexpression of TRPV1 in sperm of NC-/IVF-/ICSI-men suggests its role in conception and maintenance of pregnancy. Since ROS is regarded as one of the major contributors to sperm dysfunction, the effect of H2O2 +/- TRPV1 modulators (RTX/iRTX) on acrosomal reaction and calcium influx was evaluated to confirm TRPV1 as a redox sensor in human sperm. A significant increment in the percentage of acrosome reacted spermatozoa along with augmented Ca2+-influx was observed after H2O2 treatment, both in the presence or absence of TRPV1 agonist resiniferatoxin (RTX). The effect was attenuated by the TRPV1 antagonist iodoresiniferatoxin (iRTX), indicating the involvement of TRPV1 in mediating H2O2 response. Enhancement of motility and triggering of acrosomal reaction post TRPV1 activation suggested that disruption of these signaling cascades in vivo, possibly due to down-regulation of TRPV1 in these subfertile males. Bioinformatic analysis of the crosstalk between TRPV1 with fertility candidate proteins (reported to influence IVF outcome) revealed cell death and survival, cellular compromise, and embryonic development to be the primary networks affected by anomalous TRPV1 expression. We therefore postulate that TRPV1 can act as a redox sensor, and its expression in spermatozoa may serve as a fertility marker.

3.
Antioxid Redox Signal ; 32(8): 504-521, 2020 03 10.
Article in English | MEDLINE | ID: mdl-31691576

ABSTRACT

Aims: To understand the molecular pathways involved in oxidative stress (OS)-mediated sperm dysfunction against a hypoxic and hyperthermic microenvironment backdrop of varicocele through a proteomic approach. Results: Protein selection (261) based on their role in redox homeostasis and/or oxidative/hyperthermic/hypoxic stress response from the sperm proteome data set of unilateral varicocele (UV) in comparison with fertile control displayed 85 to be differentially expressed. Upregulation of cellular oxidant detoxification and glutathione and reduced nicotinamide adenine dinucleotide (NADH) metabolism accompanied with downregulation of protein folding, energy metabolism, and heat stress responses were observed in the UV group. Ingenuity pathway analysis (IPA) predicted suppression of oxidative phosphorylation (OXPHOS) (validated by Western blotting [WB]) along with augmentation in OS and mitochondrial dysfunction in UV. The top affected networks indicated by IPA involved heat shock proteins (HSPs: HSPA2 and HSP90B1). Their expression profile was corroborated by immunocytochemistry and WB. Hypoxia-inducible factor 1A as an upstream regulator of HSPs was predicted by MetaCore. Occurrence of reductive stress in UV spermatozoa was corroborated by thiol redox status. Innovation: This is the first evidence of a novel pathway showing aberrant redox homeostasis against chronic hypoxic insult in varicocele leading to sperm dysfunction. Conclusions: Upregulation of antioxidant system and dysfunctional OXPHOS would have shifted the redox balance of biological redox couples (GSH/GSSG, NAD+/NADH, and NADP+/NADPH) to a more reducing state leading to reductive stress. Chronic reductive stress-induced OS may be involved in sperm dysfunction in infertile men with UV, where the role of HSPs cannot be ignored. Intervention with antioxidant therapy warrants proper prior investigation.


Subject(s)
Infertility, Male/metabolism , Proteome/metabolism , Spermatozoa/metabolism , Up-Regulation/physiology , Varicocele/metabolism , Energy Metabolism/physiology , Humans , Male , NAD/metabolism , Oxidation-Reduction , Oxidative Phosphorylation , Oxidative Stress/physiology , Proteomics , Sperm Motility/physiology
4.
J Urol ; 200(2): 414-422, 2018 08.
Article in English | MEDLINE | ID: mdl-29530785

ABSTRACT

PURPOSE: Varicocele may disrupt testicular microcirculation and induce hypoxia-ischemia related degenerative changes in testicular cells and spermatozoa. Superoxide production at low oxygen concentration exacerbates oxidative stress in men with varicocele. Therefore, the current study was designed to study the role of mitochondrial redox regulation and its possible involvement in sperm dysfunction in varicocele associated infertility. MATERIALS AND METHODS: We identified differentially expressed mitochondrial proteins in 50 infertile men with varicocele and in 10 fertile controls by secondary liquid chromatography-tandem mass spectroscopy data driven in silico analysis. Identified proteins were validated by Western blot and immunofluorescence. Seminal oxidation-reduction potential was measured. RESULTS: We identified 22 differentially expressed proteins related to mitochondrial structure (LETM1, EFHC, MIC60, PGAM5, ISOC2 and import TOM22) and function (NDFSU1, UQCRC2 and COX5B, and the core enzymes of carbohydrate and lipid metabolism). Cluster analysis and 3-dimensional principal component analysis revealed a significant difference between the groups. All proteins studied were under expressed in infertile men with varicocele. Liquid chromatography-tandem mass spectroscopy data were corroborated by Western blot and immunofluorescence. Impaired mitochondrial function was associated with decreased expression of the proteins (ATPase1A4, HSPA2, SPA17 and APOA1) responsible for proper sperm function, concomitant with elevated seminal oxidation-reduction potential in the semen of infertile patients with varicocele. CONCLUSIONS: Impaired mitochondrial structure and function in varicocele may lead to oxidative stress, reduced ATP synthesis and sperm dysfunction. Mitochondrial differentially expressed proteins should be explored for the development of biomarkers as a predictor of infertility in patients with varicocele. Antioxidant therapy targeting sperm mitochondria may help improve the fertility status of these patients.


Subject(s)
Infertility, Male/diagnosis , Mitochondria/metabolism , Proteome/analysis , Spermatozoa/metabolism , Varicocele/pathology , Adenosine Triphosphate/biosynthesis , Adult , Biomarkers/analysis , Biomarkers/metabolism , Case-Control Studies , Healthy Volunteers , Humans , Infertility, Male/etiology , Infertility, Male/pathology , Male , Microcirculation , Middle Aged , Mitochondria/pathology , Oxidation-Reduction , Oxidative Stress , Prognosis , Protein Interaction Mapping , Proteome/metabolism , Proteomics/methods , Semen/metabolism , Semen Analysis/methods , Spermatozoa/cytology , Spermatozoa/pathology , Testis/blood supply , Varicocele/complications , Young Adult
5.
Biochim Biophys Acta ; 1860(7): 1450-65, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27062907

ABSTRACT

BACKGROUND: The spermatozoa undergo a series of changes in the epididymis to mature after their release from the testis and subsequently in the female reproductive tract after ejaculation to get capacitated and achieve fertilization potential. Despite having a silenced protein synthesis machinery, the dynamic change in protein profile of the spermatozoa is attributed either to acquisition of new proteins via vescicular transport or to several post-translational modifications (PTMs) occurring on the already expressed protein complement. SCOPE OF REVIEW: In this review emphasis is given on the PTMs already reported on the human sperm proteins under normal and pathologic conditions with particular reference to sperm function such as motility and fertilization. An attempt has been made to summarize different protocols and methods used for analysis of PTMs on sperm proteins and the newer trends those were emerging. MAJOR CONCLUSIONS: Deciphering the differential occurrence of PTM on protein at ultrastructural level would give us a better insight of structure-function relationship of the particular protein. Protein with multiple PTMs could be used to generate the complex interaction network involved in a physiological function of a sperm. It can be speculated that crosstalk between different PTMs occurring either on same/ other proteins actually regulate the protein stability and activity both in physiological and pathological states. GENERAL SIGNIFICANCE: The analytical prospective of various PTMs reported in human spermatozoa and their relevance to sperm function particularly in various pathophysiological states, would pave way for development of biomarkers for diagnosis, prognosis and therapeutic intervention of male infertility.


Subject(s)
Fertility , Infertility, Male/metabolism , Protein Processing, Post-Translational , Proteome , Spermatozoa/metabolism , Animals , Biomarkers/metabolism , Humans , Infertility, Male/pathology , Infertility, Male/physiopathology , Male , Proteomics/methods , Semen Analysis , Signal Transduction , Spermatozoa/pathology
6.
Biochem Biophys Res Commun ; 473(4): 781-788, 2016 05 13.
Article in English | MEDLINE | ID: mdl-27003252

ABSTRACT

Transient Receptor Potential Vanilloid sub-type 4 (TRPV4) is a non-selective cationic channel involved in regulation of temperature, osmolality and different ligand-dependent Ca(2+)-influx. Recently, we have demonstrated that TRPV4 is conserved in all vertebrates. Now we demonstrate that TRPV4 is endogenously expressed in all vertebrate sperm cells ranging from fish to mammals. In human sperm, TRPV4 is present as N-glycosylated protein and its activation induces Ca(2+)-influx. Its expression and localization differs in swim-up and swim-down cells suggesting that TRPV4 is an important determining factor for sperm motility. We demonstrate that pharmacological activation or inhibition of TRPV4 regulates Ca(2+)-wave propagation from head to tail. Such findings may have wide application in male fertility-infertility, contraception and conservation of endangered species as well.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Sperm Motility/physiology , Spermatozoa/metabolism , TRPV Cation Channels/metabolism , Animals , Bufonidae , Cells, Cultured , Ducks , Gene Expression Regulation/physiology , Humans , Lizards , Male , Species Specificity
7.
Syst Biol Reprod Med ; 62(3): 201-12, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26980262

ABSTRACT

Contribution from a defective paternal genome has been attributed to be an important cause for spontaneous recurrent pregnancy loss (RPL). Increased oxidative stress results in decreased detoxification and is a cause for damage to chromatin, proteins, and membrane lipids. The present study aimed to explore if there is a significant relationship between retained histones due to defective packaging of DNA in spermatozoa and oxidative stress. RPL patients (n=16) with a history of ≥2 embryo losses before the 20th week of gestation and no female factor abnormality, and fertile healthy volunteers (n=20) as controls were included in the study. A significant difference in the levels of protein carbonylation and lipid peroxidation together with an increased retention of histones in the experimental groups was noticed. Histone carrying sites for oxidative modification such as arginine and lysine might be responsible for disturbing the paternal epigenomic control during early stages of embryonic differentiation leading to abortion.


Subject(s)
Abortion, Habitual/etiology , Histones/metabolism , Lipid Peroxidation , Protein Carbonylation , Spermatozoa/metabolism , Female , Humans , Male , Oxidative Stress , Pregnancy , Semen Analysis
8.
PeerJ ; 3: e1310, 2015.
Article in English | MEDLINE | ID: mdl-26500819

ABSTRACT

Transient Receptor Potential cation channel, subfamily Melastatin, member 8 (TRPM8) is involved in detection of cold temperature, different noxious compounds and in execution of thermo- as well as chemo-sensitive responses at cellular levels. Here we explored the molecular evolution of TRPM8 by analyzing sequences from various species. We elucidate that several regions of TRPM8 had different levels of selection pressure but the 4th-5th transmembrane regions remain highly conserved. Analysis of synteny suggests that since vertebrate origin, TRPM8 gene is linked with SPP2, a bone morphogen. TRPM8, especially the N-terminal region of it, seems to be highly variable in human population. We found 16,656 TRPM8 variants in 1092 human genomes with top variations being SNPs, insertions and deletions. A total of 692 missense mutations are also mapped to human TRPM8 protein of which 509 seem to be delateroiours in nature as supported by Polyphen V2, SIFT and Grantham deviation score. Using a highly specific antibody, we demonstrate that TRPM8 is expressed endogenously in the testis of rat and sperm cells of different vertebrates ranging from fish to higher mammals. We hypothesize that TRPM8 had emerged during vertebrate evolution (ca 450 MYA). We propose that expression of TRPM8 in sperm cell and its role in regulating sperm function are important factors that have guided its molecular evolution, and that these understandings may have medical importance.

9.
Gen Comp Endocrinol ; 220: 23-32, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25449179

ABSTRACT

While effects of different steroids on the gene expression and regulation are well established, it is proven that steroids can also exert rapid non-genomic actions in several tissues and cells. In most cases, these non-genomic rapid effects of steroids are actually due to intracellular mobilization of Ca(2+)- and other ions suggesting that Ca(2+) channels are involved in such effects. Transient Receptor Potential (TRP) ion channels or TRPs are the largest group of non-selective and polymodal ion channels which cause Ca(2+)-influx in response to different physical and chemical stimuli. While non-genomic actions of different steroids on different ion channels have been established to some extent, involvement of TRPs in such functions is largely unexplored. In this review, we critically analyze the literature and summarize how different steroids as well as their metabolic precursors and derivatives can exert non-genomic effects by acting on different TRPs qualitatively and/or quantitatively. Such effects have physiological repercussion on systems such as in sperm cells, immune cells, bone cells, neuronal cells and many others. Different TRPs are also endogenously expressed in diverse steroid-producing tissues and thus may have importance in steroid synthesis as well, a process which is tightly controlled by the intracellular Ca(2+) concentrations. Tissue and cell-specific expression of TRP channels are also regulated by different steroids. Understanding of the crosstalk between TRP channels and different steroids may have strong significance in physiological, endocrinological and pharmacological context and in future these compounds can also be used as potential biomedicine.


Subject(s)
Calcium/metabolism , Steroids/therapeutic use , Transient Receptor Potential Channels/physiology , Humans , Steroids/metabolism , Transient Receptor Potential Channels/metabolism
10.
Reprod Sci ; 22(6): 638-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25376881

ABSTRACT

As the mammalian spermatozoa transcends from the testis to the end of the epididymal tubule, the functionally incompetent spermatozoa acquires its fertilizing capability. Molecular changes in the spermatozoa at the posttesticular level concern qualitative and quantitative modifications of proteins along with their sugar moieties and membranous lipids mostly associated with motility, egg binding, and penetration processes. Proteomic studies have identified numerous sperm-specific proteins, and recent reports have provided a further understanding of their function with respect to male fertility. High-throughput techniques such as mass spectrometry have shown drastic potential for the identification and study of sperm proteins. In fact, compelling evidence has provided that proteins are critically important in cellular remodeling event and that aberrant expression is associated with pronounced defects in sperm function. This review highlights the posttesticular functional transformation in the epididymis and female reproductive tract with due emphasis on proteomics.


Subject(s)
Proteins/metabolism , Proteome , Proteomics , Spermatozoa/metabolism , Animals , Biomarkers/metabolism , Female , Fertility , High-Throughput Screening Assays , Humans , Infertility, Male/metabolism , Infertility, Male/physiopathology , Male , Mass Spectrometry , Proteomics/methods , Signal Transduction , Sperm-Ovum Interactions , Spermatogenesis
11.
Channels (Austin) ; 7(6): 483-92, 2013.
Article in English | MEDLINE | ID: mdl-23912940

ABSTRACT

Sperm cells exhibit extremely high sensitivity in response to slight changes in temperature, osmotic pressure and/or presence of various chemical stimuli. In most cases throughout the evolution, these physico-chemical stimuli trigger Ca (2+)-signaling and subsequently alter structure, cellular function, motility and survival of the sperm cells. Few reports have recently demonstrated the presence of Transient Receptor Potential (TRP) channels in the sperm cells from higher eukaryotes, mainly from higher mammals. In this work, we have explored if the sperm cells from lower vertebrates can also have thermo-sensitive TRP channels. In this paper, we demonstrate the endogenous presence of one specific thermo-sensitive ion channel, namely Transient Receptor Potential Vanilloid family member sub type 1 (TRPV1) in the sperm cells collected from fresh water teleost fish, Labeo rohita. By using western blot analysis, fluorescence assisted cell sorting (FACS) and confocal microscopy; we confirm the presence of this non-selective cation channel. Activation of TRPV1 by an endogenous activator NADA significantly increases the quality as well as the duration of fish sperm movement. The sperm cell specific expression of TRPV1 matches well with our in silico sequence analysis. The results demonstrate that TRPV1 gene is conserved in various fishes, ranging from 1-3 in copy number, and it originated by fish-specific duplication events within the last 320 million years (MY). To the best of our knowledge, this is the first report demonstrating the presence of any thermo-sensitive TRP channels in the sperm cells of early vertebrates as well as of aquatic animals, which undergo external fertilization in fresh water. This observation may have implications in the aquaculture, breeding of several fresh water and marine fish species and cryopreservation of fish sperms.


Subject(s)
Cyprinidae , Gene Expression Regulation , Sperm Motility , TRPV Cation Channels/metabolism , Temperature , Animals , Humans , Male , Spermatozoa/cytology , Spermatozoa/metabolism , Spermatozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...