Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 659: 124265, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795935

ABSTRACT

Metformin (MET) can be an alternative therapeutic strategy for managing ocular burn primarily because of its pleiotropic mechanism. Longer retention on the ocular surface and sustained release are necessary to ensure the efficacy of MET for ocular application. Although the high aqueous solubility of MET is good for formulation and biocompatibility, it makes MET prone to high nasolacrimal drainage. This limits ocular residence and may be a challenge in its application. To address this, polymers approved for ophthalmic application with natural origin were analyzed through in silico methods to determine their ability to bind to mucin and interact with MET. An ocular insert of MET (3 mg/6 mm) was developed using a scalable solvent casting method without using preservatives. The relative composition of the insert was 58 ± 2.06 %w/w MET with approximately 14 %w/w tamarind seed polysaccharide (TSP), and 28 %w/w propylene glycol (PG). Its stability was demonstrated as per the ICH Q1A (R2) guidelines. Compatibility, ocular retention, drug release, and other functional parameters were evaluated. In rabbits, efficacy was demonstrated in the 'corneal alkali burn preclinical model'. TSP showed potential for mucoadhesion and interaction with MET. With adequate stability and sterility, the insert contributed to adequate retention of MET (10-12 h) in vivo and slow release (30 h) in vitro. This resulted in significant efficacy in vivo.

2.
Mol Divers ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085737

ABSTRACT

Chikungunya virus infection has become a global health concern because of its high rates of morbidity and mortality in patients with preexisting conditions. Inflammation and arthritis are the major symptoms of CHIKV that persist even after clearance of CHIKV. To develop an antiviral that can reduce infection and manage inflammation independent of the CHIKV infection, ibuprofen (IBU) conjugates with sulfonamide and thiosemicarbazide were synthesized. The conjugates, IBU-SULFA, IBU-ISS and IBU-IBT significantly inhibited CHIKV infection in vitro with a selectivity index (CC50/IC50) of > 11.9, > 25.1 and > 21, respectively. The reduction in infection was attributed to the interference of the conjugates in the early stages of CHIKV life cycle. With no acute oral toxicity, these compounds significantly reduced inflammation and arthritis in rats. Unlike IBU, the conjugates were not ulcerogenic. In conclusion, the conjugation imparted anti-CHIKV properties while retaining the anti-inflammatory properties of IBU. These findings can encourage further validation and research to develop an antiviral for CHIKV to manage both infection and arthritis.

SELECTION OF CITATIONS
SEARCH DETAIL
...