Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 53(5): 2253-9, 2016 May.
Article in English | MEDLINE | ID: mdl-27407191

ABSTRACT

A new simple, rapid and precise RP-HPLC method was developed for the extraction and quantitative estimation of caffeine (C), (-)-epigallocatechin gallate (EGCG), (+)-catechin(Ct), (-)-epicatechin(EC), and (-)-epicatechin gallate (ECG) (collectively named as Tea Powder Bioactives TPBAs) extracted from tea powder using different ratios of ethanol: water. The simultaneous determination of TPBAs was performed using the UV spectrophotometric method which employs the absorbance at 205 nm (λmax of caffeine and polyphenols). This method is a gradient based HPLC method with a flow rate of 0.8 mL/min using Inertsil ODS 100 × 4.6 mm, 3 µm column with methanol and ammonium dihydrogen phosphate (pH-2.8) as mobile phase. The method was validated in terms of specificity, precision, linearity, accuracy, limit of quantification (LOQ), and limit of detection (LOD). The linearity of the proposed method was investigated for concentration ranging between 0.5-60 µg/mL with regression co-efficient, R(2) = 0.999-1.0. This method estimates all the TPBAs simultaneously with enhanced precision and linearity as per the ICH guidelines. Also, to confirm the individual TPBA, the antioxidant property of the each TPBA was analyzed which was commensurate with that of the previous reports.

2.
Biochim Biophys Acta ; 1835(1): 46-60, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23103770

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, and is also the fourth most common cancer worldwide with around 700,000 new cases each year. Currently, first line chemotherapeutic drugs used for HCC include fluorouracil, cisplatin, doxorubicin, paclitaxel and mitomycin, but most of these are non-selective cytotoxic molecules with significant side effects. Sorafenib is the only approved targeted therapy by the U.S. Food and Drug Administration for HCC treatment, but patients suffer from various kinds of adverse effects, including hypertension. The signal-transducer-and-activator-of-transcription 3 (STAT3) protein, one of the members of STATs transcription factor family, has been implicated in signal transduction by different cytokines, growth factors and oncogenes. In normal cells, STAT3 activation is tightly controlled to prevent dysregulated gene transcription, whereas constitutively activated STAT3 plays an important role in tumorigenesis through the upregulation of genes involved in anti-apoptosis, proliferation and angiogenesis. Thus, pharmacologically safe and effective agents that can block STAT3 activation have the potential both for the prevention and treatment of HCC. In the present review, we discuss the possible role of STAT3 signaling cascade and its interacting partners in the initiation of HCC and also analyze the role of various STAT3 regulated genes in HCC progression, inflammation, survival, invasion and angiogenesis.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Inflammation/metabolism , Inflammation/pathology , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Neoplasm Invasiveness , STAT3 Transcription Factor/drug effects
3.
Mol Cancer ; 10: 107, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21880153

ABSTRACT

BACKGROUND: Increasing evidence indicates that the interaction between the CXC chemokine receptor-4 (CXCR4) and its ligand CXCL12 is critical in the process of metastasis that accounts for more than 90% of cancer-related deaths. Thus, novel agents that can downregulate the CXCR4/CXCL12 axis have therapeutic potential in inhibiting cancer metastasis. METHODS: In this report, we investigated the potential of an agent, plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone), for its ability to modulate CXCR4 expression and function in various tumor cells using Western blot analysis, DNA binding assay, transient transfection, real time PCR analysis, chromatin immunoprecipitation, and cellular migration and invasion assays. RESULTS: We found that plumbagin downregulated the expression of CXCR4 in breast cancer cells irrespective of their HER2 status. The decrease in CXCR4 expression induced by plumbagin was not cell type-specific as the inhibition also occurred in gastric, lung, renal, oral, and hepatocellular tumor cell lines. Neither proteasome inhibition nor lysosomal stabilization had any effect on plumbagin-induced decrease in CXCR4 expression. Detailed study of the underlying molecular mechanism(s) revealed that the regulation of the downregulation of CXCR4 was at the transcriptional level, as indicated by downregulation of mRNA expression, inhibition of NF-κB activation, and suppression of chromatin immunoprecipitation activity. In addition, using a virtual, predictive, functional proteomics-based tumor pathway platform, we tested the hypothesis that NF-κB inhibition by plumbagin causes the decrease in CXCR4 and other metastatic genes. Suppression of CXCR4 expression by plumbagin was found to correlate with the inhibition of CXCL12-induced migration and invasion of both breast and gastric cancer cells. CONCLUSIONS: Overall, our results indicate, for the first time, that plumbagin is a novel blocker of CXCR4 expression and thus has the potential to suppress metastasis of cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Naphthoquinones/pharmacology , Receptors, CXCR4/metabolism , Breast Neoplasms , Cell Line, Tumor , Chemokine CXCL12/pharmacology , Chemokine CXCL12/physiology , Computer Simulation , Down-Regulation , Female , Genes, Reporter , Humans , Luciferases/biosynthesis , Luciferases/genetics , Models, Biological , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasm Invasiveness , Protein Binding , Receptors, CXCR4/genetics , Stomach Neoplasms , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...