Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Ecology ; 105(4): e4237, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369779

ABSTRACT

Interspecific interactions can influence species' activity and movement patterns. In particular, species may avoid or attract each other through reactive responses in space and/or time. However, data and methods to study such reactive interactions have remained scarce and were generally limited to two interacting species. At this time, the deployment of camera traps opens new opportunities but adapted statistical techniques are still required to analyze interaction patterns with such data. We present the multivariate Hawkes process (MHP) and show how it can be used to analyze interactions between several species using camera trap data. Hawkes processes use flexible pairwise interaction functions, allowing us to consider asymmetries and variations over time when depicting reactive temporal interactions. After describing the theoretical foundations of the MHP, we outline how its framework can be used to study interspecific interactions with camera trap data. We design a simulation study to evaluate the performance of the MHP and of another existing method to infer interactions from camera trap-like data. We also use the MHP to infer reactive interactions from real camera trap data for five species from South African savannas (impala Aepyceros melampus, greater kudu Tragelaphus strepsiceros, lion Panthera leo, blue wildebeest Connochaetes taurinus and Burchell's zebra Equus quagga burchelli). The simulation study shows that the MHP can be used as a tool to benchmark other methods of interspecific interaction inference and that this model can reliably infer interactions when enough data are considered. The analysis of real data highlights evidence of predator avoidance by prey and herbivore-herbivore attraction. Lastly, we present the advantages and limits of the MHP and discuss how it can be improved to infer attraction/avoidance patterns more reliably. As camera traps are increasingly used, the multivariate Hawkes process provides a promising framework to decipher the complexity of interactions structuring ecological communities.


Subject(s)
Antelopes , Animals , Herbivory
2.
Ecol Evol ; 12(8): e9239, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36052301

ABSTRACT

Carnivore intraguild dynamics depend on a complex interplay of environmental affinities and interspecific interactions. Context-dependency is commonly expected with varying suites of interacting species and environmental conditions but seldom empirically described. In South Africa, decentralized approaches to conservation and the resulting multi-tenure conservation landscapes have markedly altered the environmental stage that shapes the structure of local carnivore assemblages. We explored assemblage-wide patterns of carnivore spatial (residual occupancy probability) and temporal (diel activity overlap) co-occurrence across three adjacent wildlife-oriented management contexts-a provincial protected area, a private ecotourism reserve, and commercial game ranches. We found that carnivores were generally distributed independently across space, but existing spatial dependencies were context-specific. Spatial overlap was most common in the protected area, where species occur at higher relative abundances, and in game ranches, where predator persecution presumably narrows the scope for spatial asymmetries. In the private reserve, spatial co-occurrence patterns were more heterogeneous but did not follow a dominance hierarchy associated with higher apex predator densities. Pair-specific variability suggests that subordinate carnivores may alternate between pre-emptive behavioral strategies and fine-scale co-occurrence with dominant competitors. Consistency in species-pairs diel activity asynchrony suggested that temporal overlap patterns in our study areas mostly depend on species' endogenous clock rather than the local context. Collectively, our research highlights the complexity and context-dependency of guild-level implications of current management and conservation paradigms; specifically, the unheeded potential for interventions to influence the local network of carnivore interactions with unknown population-level and cascading effects.

3.
Ecology ; 103(2): e03600, 2022 02.
Article in English | MEDLINE | ID: mdl-34816428

ABSTRACT

Theory on intraguild killing (IGK) is central to mammalian carnivore community ecology and top-down ecosystem regulation. Yet, the cryptic nature of IGK hinders empirical evaluations. Using a novel data source - online photographs of interspecific aggression between African carnivores - we revisited existing predictions about the extent and drivers of IGK. Compared with seminal reviews, our constructed IGK network yielded 10 more species and nearly twice as many interactions. The extent of interactions increased 37% when considering intraguild aggression (direct attack) as a precursor of killing events. We show that IGK occurs over a wider range of body-mass ratios than predicted by standing competition-based views, with highly asymmetrical interactions being pervasive. Evidence that large species, particularly hypercarnivore felids, target sympatric carnivores with a wide range of body sizes suggests that current IGK theory is incomplete, underestimating alternative competition pathways and the role of predatory and incidental killing. Our findings reinforce the potential for IGK-mediated cascades in species-rich assemblages and community-wide suppressive effects of large carnivores.


Subject(s)
Carnivora , Ecosystem , Aggression , Animals , Carnivora/physiology , Ecology , Predatory Behavior/physiology
4.
Animals (Basel) ; 11(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34573584

ABSTRACT

South Africa's decentralized approach to conservation entails that wildlife outside formally protected areas inhabit complex multi-use landscapes, where private wildlife business (ecotourism and/or hunting) co-exist in a human-dominated landscape matrix. Under decentralized conservation, wildlife is perceived to benefit from increased amount of available habitat, however it is crucial to understand how distinct management priorities and associated landscape modifications impact noncharismatic taxa, such as small mammals. We conducted extensive ink-tracking-tunnel surveys to estimate heterogeneity in rodent distribution and investigate the effect of different environmental factors on abundance patterns of two size-based rodent groups (small- and medium-sized species), across three adjacent management contexts in NE KwaZulu-Natal, South Africa: a private ecotourism game reserve, mixed farms and traditional communal areas (consisting of small clusters of houses interspersed with grazing areas and seminatural vegetation). Our hypotheses were formulated regarding the (1) area typology, (2) vegetation structure, (3) ungulate pressure and (4) human disturbance. Using a boosted-regression-tree approach, we found considerable differences between rodent groups' abundance and distribution, and the underlying environmental factors. The mean relative abundance of medium-sized species did not differ across the three management contexts, but small species mean relative abundance was higher in the game reserves, confirming an influence of the area typology on their abundance. Variation in rodent relative abundance was negatively correlated with human disturbance and ungulate presence. Rodent abundance seems to be influenced by environmental gradients that are directly linked to varying management priorities across land uses, meaning that these communities might not benefit uniformly by the increased amount of habitat promoted by the commercial wildlife industry.

5.
Onderstepoort J Vet Res ; 88(1): e1-e13, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34342470

ABSTRACT

The reservoir host of Mokola virus (MOKV), a rabies-related lyssavirus species endemic to Africa, remains unknown. Only sporadic cases of MOKV have been reported since its first discovery in the late 1960s, which subsequently gave rise to various reservoir host hypotheses. One particular hypothesis focusing on non-volant small mammals (e.g. shrews, sengis and rodents) is buttressed by previous MOKV isolations from shrews (Crocidura sp.) and a single rodent (Lophuromys sikapusi). Although these cases were only once-off detections, it provided evidence of the first known lyssavirus species has an association with non-volant small mammals. To investigate further, retrospective surveillance was conducted in 575 small mammals collected from South Africa. Nucleic acid surveillance using a pan-lyssavirus quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay of 329 brain samples did not detect any lyssavirus ribonucleic acid (RNA). Serological surveillance using a micro-neutralisation test of 246 serum samples identified 36 serum samples that were positive for the presence of MOKV neutralising antibodies (VNAs). These serum samples were all collected from Gerbilliscus leucogaster (Bushveld gerbils) rodents from Meletse in Limpopo province (South Africa). Mokola virus infections in Limpopo province have never been reported before, and the high MOKV seropositivity of 87.80% in these gerbils may indicate a potential rodent reservoir.


Subject(s)
Lyssavirus , Rabies , Animals , Mammals , Rabies/epidemiology , Rabies/veterinary , Retrospective Studies , South Africa/epidemiology
6.
Ecohealth ; 18(1): 113-122, 2021 03.
Article in English | MEDLINE | ID: mdl-34059963

ABSTRACT

One of the key factors influencing the population dynamics of threatened species such as felids is disease, but long-term studies of the factors influencing seroprevalence of wild felids are extremely rare, hindering conservation efforts. We set out to determine seroprevalence of six viral diseases (feline panleukopenia virus, feline leukemia virus, feline coronavirus, feline calicivirus, feline herpes virus, and feline immunodeficiency virus) among a population of serval (Leptailurus serval) with an extremely high density in South Africa. We captured 55 individuals over four years and screened blood samples for antibodies to each virus. We found that seroprevalence were high (ranging from 30.0% positive for a single virus to 1.8% positive for up to five viruses) and that seroprevalence was influenced by season and sex, but not body condition. We suggest further monitoring of this population and recommend that long-term studies are conducted for serval and other felids to determine whether these trends are representative on a broader scale.


Subject(s)
Animals, Wild/virology , Cat Diseases/epidemiology , Cats/virology , Animals , Seasons , Seroepidemiologic Studies , Sex Distribution , Viruses
7.
Proc Biol Sci ; 288(1946): 20202379, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33715442

ABSTRACT

Apex predator reintroductions have proliferated across southern Africa, yet their ecological effects and proposed umbrella benefits of associated management lack empirical evaluations. Despite a rich theory on top-down ecosystem regulation via mesopredator suppression, a knowledge gap exists relating to the influence of lions (Panthera leo) over Africa's diverse mesocarnivore (less than 20 kg) communities. We investigate how geographical variation in mesocarnivore community richness and occupancy across South African reserves is associated with the presence of lions. An interesting duality emerged: lion reserves held more mesocarnivore-rich communities, yet mesocarnivore occupancy rates and evenness-weighted diversity were lower in the presence of lions. Human population density in the reserve surroundings had a similarly ubiquitous negative effect on mesocarnivore occupancy. The positive association between species richness and lion presence corroborated the umbrella species concept but translated into small differences in community size. Distributional contractions of mesocarnivore species within lion reserves, and potentially corresponding numerical reductions, suggest within-community mesopredator suppression by lions, probably as a result of lethal encounters and responses to a landscape of fear. Our findings offer empirical support for the theoretical understanding of processes underpinning carnivore community assembly and are of conservation relevance under current large-predator orientated management and conservation paradigms.


Subject(s)
Carnivora , Lions , Africa , Animals , Ecosystem , Geography , Humans
8.
Integr Zool ; 15(6): 578-594, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32348609

ABSTRACT

Rodents generate negative consequences for smallholder farmers in Africa that directly impact household and livestock damage, food security, and public health. Ecologically Based Rodent Management (EBRM) seeks sustainable solutions for the mitigation of rodent damage through assessments of rodent population dynamics, agro-ecosystems, and socio-cultural contexts. We adopt a comparative approach across 3 rural Afro-Malagasy smallholder farming regions in South Africa, Tanzania, and Madagascar to assess the household impacts of rodent pests and current perceptions and preferences associated with several rodent control measures. We conducted focus group questionnaires and interviews in different study site locations. Rodents assert multiple impacts on Afro-Malagasy farmers demonstrating recurrent and emerging agricultural and household costs, and public health impacts. We identify a significant knowledge gap in educating communities about the application of different EBRM approaches in favor of acute poisons that are perceived to be more effective. Cultural issues and taboos also have a significant impact on the social acceptance of rodent hunting as well as biological control using indigenous predators. We advocate for an enhanced investigation of the socio-cultural beliefs associated with different rodent practices to understand the factors underlying social acceptance. A collaborative approach that integrates the perspectives of target communities to inform the design of EBRM initiatives according to the specific agro-ecosystem and socio-cultural context is necessary to ensure programmatic success.


Subject(s)
Farmers/psychology , Rodent Control/methods , Rodentia , Agriculture , Animals , Culture , Female , Focus Groups , Humans , Madagascar , Male , Pest Control, Biological , Rodent Control/economics , Rodenticides , South Africa , Surveys and Questionnaires , Tanzania
9.
PeerJ ; 7: e6650, 2019.
Article in English | MEDLINE | ID: mdl-30956899

ABSTRACT

As the global road network expands, roads pose an emerging threat to wildlife populations. One way in which roads can affect wildlife is wildlife-vehicle collisions, which can be a significant cause of mortality through roadkill. In order to successfully mitigate these problems, it is vital to understand the factors that can explain the distribution of roadkill. Collecting the data required to enable this can be expensive and time consuming, but there is significant potential in partnering with organisations that conduct existing road patrols to obtain the necessary data. We assessed the feasibility of using roadkill data collected daily between 2014 and 2017 by road patrol staff from a private road agency on a 410 km length of the N3 road in South Africa. We modelled the relationship between a set of environmental and anthropogenic variables on the number of roadkill carcasses, using serval (Leptailurus serval) as a model species. We recorded 5.24 serval roadkill carcasses/100 km/year. The number of carcasses was related to season, the amount of wetland, and NDVI, but was not related to any of the anthropogenic variables we included. This suggests that roadkill patterns may differ greatly depending on the ecology of species of interest, but targeting mitigation measures where roads pass through wetlands may help to reduce serval roadkill. Partnering with road agencies for data collection offers powerful opportunities to identify factors related to roadkill distribution and reduce the threats posed by roads to wildlife.

10.
Sci Rep ; 8(1): 16575, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30410114

ABSTRACT

As the environment becomes increasingly altered by human development, the importance of understanding the ways in which wildlife interact with modified landscapes is becoming clear. Areas such as industrial sites are sometimes presumed to have little conservation value, but many of these sites have areas of less disturbed habitats around their core infrastructure, which could provide ideal conditions to support some species, such as mesocarnivores. We conducted the first assessments of the density of serval (Leptailurus serval) at the Secunda Synfuels Operations plant, South Africa, using camera trap surveys analysed within a spatially explicit capture recapture framework. We show that servals occurred at densities of 76.20-101.21 animals per 100 km², which are higher than previously recorded densities for this species, presumably due to high abundance of prey and the absence of persecution and/or competitor species. Our findings highlight the significant conservation potential of industrialised sites, and we suggest that such sites could help contribute towards meeting conservation goals.


Subject(s)
Conservation of Natural Resources/methods , Felidae/growth & development , Animals , Carnivora , Female , Human Activities , Humans , Industrial Development , Male , Population Density , South Africa , Video Recording
11.
Folia Parasitol (Praha) ; 652018 Oct 02.
Article in English | MEDLINE | ID: mdl-30348909

ABSTRACT

Tissue samples from wildlife from South Africa were opportunistically collected and screened for haemoprotozoan parasites using nonspecific PCR primers. Samples of 127 individuals were tested, comprising over 50 different species. Haemogregarines were the most commonly identified parasites, but sarcocystids and piroplasmids were also detected. Phylogenetic analyses estimated from the 18S rDNA marker highlighted the occurrence of several novel parasite forms and the detection of parasites in novel hosts. Phylogenetic relationships, which have been recently reviewed, appear to be much more complex than previously considered. Our study highlights the high diversity of parasites circulating in wildlife in this biodiverse region, and the need for further studies to resolve taxonomic issues.


Subject(s)
Apicomplexa/isolation & purification , Biodiversity , Mammals/parasitology , Reptiles/parasitology , Animals , Apicomplexa/classification , DNA, Protozoan/analysis , Host-Parasite Interactions , Protozoan Infections, Animal/parasitology , RNA, Ribosomal, 18S/analysis , South Africa
12.
Data Brief ; 18: 753-759, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29900232

ABSTRACT

This dataset includes data derived from camera trap surveys and questionnaire surveys relating to small carnivores in agro-ecosystems in the Vhembe Biosphere Reserve, South Africa. The data were collected as part of the study "Predation by small mammalian carnivores in rural agro-ecosystems: An undervalued ecosystem service?" (Williams et al., 2017a) [1]. Camera trap locations were stratified by land use: settlement, crops, and grazing areas. The camera trap data provide an insight into the ecology of the nine species of small carnivores that were recorded: striped polecat (Ictonyx striatus), honey badger (Mellivora capensis), large-spotted genet (Genetta maculata), African civet (Civettictis civetta), slender mongoose (Galerella sanguinea), Meller's mongoose (Rhynchogale melleri), Selous' mongoose (Paracynictis selousi), white tailed mongoose (Ichneumia albicauda), and dwarf mongoose (Helogale parvula). We also recorded domesticated animals such as domestic cats (Felis catus), domestic dogs (Canis lupus familiaris), and cattle (Bos taurus) on the camera traps. The questionnaire data are comprised of responses of stakeholders to questions regarding the impacts of these species on rural farming communities. In the accompanying data repository hosted on Figshare (doi 10.6084/m9.figshare.4750807, (Williams et al., 2017b) [2]) we provide raw data, along with processed data and R code used to analyse these data to determine the impact of land use and domestic animals on the species richness and occupancy of small carnivores in rural agro-ecosystems (Williams et al., 2017a) [1].

13.
J Wildl Dis ; 54(2): 392-396, 2018 04.
Article in English | MEDLINE | ID: mdl-29369722

ABSTRACT

Relatively little is known about protozoan parasites in African animals. Here we investigated the occurrence of protozoan parasites in mammals from South Africa. Oocysts of protozoan parasites were detected in 13 of 56 (23%) fecal samples using conventional microscopic examination methods. Cryptosporidium spp. and Cystoisospora spp. were detected in eight (14%) and five (9%) samples, respectively. Mixed parasitic infection of Cryptosporidium spp. and Cystoisospora spp. was recorded in banded mongoose ( Mungos mungo). Cryptosporidium spp. was detected for the first time in cheetah ( Acinonyx jubatus), spotted hyena ( Crocuta crocuta), and African polecat ( Ictonyx striatus). Antibodies to Toxoplasma gondii and Neospora caninum were not detected by enzyme-linked immunosorbent assay in any of 32 sera tested. We detected T. gondii by PCR in tissues of five of 243 (2%) animals: domestic dog ( Canis lupus familiaris), gerbil ( Gerbilliscus spp.), greater kudu ( Tragelaphus strepsiceros), honey badger ( Mellivora capensis), and white-tailed mongoose ( Ichneumia albicauda). Our isolation of T. gondii from white-tailed mongoose and honey badger was a unique finding. All tissue samples were negative for N. caninum. The study increases our knowledge on the occurrence of protozoan parasites in populations of wild and domestic animals in South Africa.


Subject(s)
Animals, Wild , Mammals , Protozoan Infections, Animal/parasitology , Animals , Feces/parasitology , Protozoan Infections, Animal/epidemiology , South Africa/epidemiology
15.
PLoS One ; 12(3): e0174554, 2017.
Article in English | MEDLINE | ID: mdl-28358899

ABSTRACT

Rodent pests are especially problematic in terms of agriculture and public health since they can inflict considerable economic damage associated with their abundance, diversity, generalist feeding habits and high reproductive rates. To quantify rodent pest impacts and identify trends in rodent pest research impacting on small-holder agriculture in the Afro-Malagasy region we did a systematic review of research outputs from 1910 to 2015, by developing an a priori defined set of criteria to allow for replication of the review process. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We reviewed 162 publications, and while rodent pest research was spatially distributed across Africa (32 countries, including Madagascar), there was a disparity in number of studies per country with research biased towards four countries (Tanzania [25%], Nigeria [9%], Ethiopia [9%], Kenya [8%]) accounting for 51% of all rodent pest research in the Afro-Malagasy region. There was a disparity in the research themes addressed by Tanzanian publications compared to publications from the rest of the Afro-Malagasy region where research in Tanzania had a much more applied focus (50%) compared to a more basic research approach (92%) in the rest of the Afro-Malagasy region. We found that pest rodents have a significant negative effect on the Afro-Malagasy small-holder farming communities. Crop losses varied between cropping stages, storage and crops and the highest losses occurred during early cropping stages (46% median loss during seedling stage) and the mature stage (15% median loss). There was a scarcity of studies investigating the effectiveness of various management actions on rodent pest damage and population abundance. Our analysis highlights that there are inadequate empirical studies focused on developing sustainable control methods for rodent pests and rodent pests in the Africa-Malagasy context is generally ignored as a research topic.


Subject(s)
Agriculture , Crops, Agricultural/parasitology , Pest Control, Biological , Rodentia , Africa , Animals , Humans
16.
PLoS One ; 10(4): e0125539, 2015.
Article in English | MEDLINE | ID: mdl-25905623

ABSTRACT

Predation strategies in response to altering prey abundances can dramatically influence the demographic effects of predation. Despite this, predation strategies of humans are rarely incorporated into quantitative assessments of the demographic impacts of humans killing carnivores. This scarcity largely seems to be caused by a lack of data. In this study, we contrasted predation strategies exhibited by people involved in retaliatory killing and recreational sport hunting of leopards (Panthera pardus) in the Waterberg District Municipality, South Africa. We predicted a specialist predation strategy exemplified by a type II functional response for retaliatory killing, and a generalist strategy exemplified by a type III functional response for recreational sport hunting. We could not distinguish between a type I, a type II, or a type III functional response for retaliatory killing, but the most parsimonious model for recreational sport hunting corresponded to a type I functional response. Kill rates were consistently higher for retaliatory killing than for recreational sport hunting. Our results indicate that retaliatory killing of leopards may have severe demographic consequences for leopard populations, whereas the demographic consequences of recreational sport hunting likely are less dramatic.


Subject(s)
Panthera/physiology , Animals , Conservation of Natural Resources , Female , Humans , Male , Population Density , Recreation , South Africa , Sports
SELECTION OF CITATIONS
SEARCH DETAIL
...