Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
JAMA Netw Open ; 6(4): e237230, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37040116

ABSTRACT

Importance: Bayesian clinical trial designs are increasingly common; given their promotion by the US Food and Drug Administration, the future use of the bayesian approach will only continue to increase. Innovations possible when using the bayesian approach improve the efficiency of drug development and the accuracy of clinical trials, especially in the context of substantial data missingness. Objective: To explain the foundations, interpretations, and scientific justification of the bayesian approach in the setting of lecanemab trial 201, a bayesian-designed phase 2 dose-finding trial; to demonstrate the efficiency of using a bayesian design; and to show how it accommodates innovations in the prospective design and also treatment-dependent types of missing data. Design, Setting, and Participants: This study was a bayesian analysis of a clinical trial comparing the efficacy of 5 lecanemab 201 dosages for treatment of early Alzheimer disease. The goal of the lecanemab 201 trial was to identify the effective dose 90 (ED90), the dose achieving at least 90% of the maximum effectiveness of doses considered in the trial. This study assessed the bayesian adaptive randomization used, in which patients were preferentially assigned to doses that would give more information about the ED90 and its efficacy. Interventions: Patients in the lecanemab 201 trial were adaptively randomized to 1 of 5 dose regimens or placebo. Main Outcomes and Measures: The primary end point of lecanemab 201 was the Alzheimer Disease Composite Clinical Score (ADCOMS) at 12 months with continued treatment and follow-up out to 18 months. Results: A total 854 patients were included in trial treatment: 238 were in the placebo group (median age, 72 years [range, 50-89 years]; 137 female [58%]) and 587 were assigned to a lecanemab 201 treatment group (median age, 72 years [range, 50-90 years]; 272 female [46%]). The bayesian approach improved the efficiency of a clinical trial by prospectively adapting to the trial's interim results. By the trial's end more patients had been assigned to the better-performing doses: 253 (30%) and 161 (19%) patients to 10 mg/kg monthly and 10 mg/kg biweekly vs 51 (6%), 52 (6%), and 92 (11%) patients to 5 mg/kg monthly, 2.5 mg/kg biweekly, and 5 mg/kg biweekly, respectively. The trial identified 10 mg/kg biweekly as the ED90. The change in ADCOMS of the ED90 vs placebo was -0.037 at 12 months and -0.047 at 18 months. The bayesian posterior probability that the ED90 was superior to placebo was 97.5% at 12 months and 97.7% at 18 months. The respective probabilities of super-superiority were 63.8% and 76.0%. The primary analysis of the randomized bayesian lecanemab 201 trial found in the context of missing data that the most effective dose of lecanemab nearly doubles its estimated efficacy at 18 months of follow-up in comparison with restricting analysis to patients who completed the full 18 months of the trial. Conclusions and Relevance: Innovations associated with the bayesian approach can improve the efficiency of drug development and the accuracy of clinical trials, even in the context of substantial data missingness. Trial Registration: ClinicalTrials.gov Identifier: NCT01767311.


Subject(s)
Alzheimer Disease , Humans , Female , Aged , Bayes Theorem
2.
Alzheimers Dement (N Y) ; 9(1): e12377, 2023.
Article in English | MEDLINE | ID: mdl-36949897

ABSTRACT

INTRODUCTION: Lecanemab is a humanized immunoglobulin G1 (IgG1) monoclonal antibody that preferentially targets soluble aggregated Aß species (protofibrils) with activity at amyloid plaques. Amyloid-related imaging abnormalities (ARIA) profiles appear to differ for various anti-amyloid antibodies. Here, we present ARIA data from a large phase 2 lecanemab trial (Study 201) in early Alzheimer's disease. METHODS: Study 201 trial was double-blind, placebo-controlled (core) with an open-label extension (OLE). Observed ARIA events were summarized and modeled via Kaplan-Meier graphs. An exposure response model was developed. RESULTS: In the phase 2 core and OLE, there was a low incidence of ARIA-E (<10%), with <3% symptomatic cases. ARIA-E was generally asymptomatic, mild-to-moderate in severity, and occurred early (<3 months). ARIA-E was correlated with maximum lecanemab serum concentration and incidence was higher in apolipoprotein E4 (ApoE4) homozygous carriers. ARIA-H and ARIA-E occurred with similar frequency in core and OLE. DISCUSSION: Lecanemab can be administered without titration with modest incidence of ARIA.

3.
Alzheimers Dement ; 19(4): 1227-1233, 2023 04.
Article in English | MEDLINE | ID: mdl-35971310

ABSTRACT

INTRODUCTION: The Alzheimer's disease (AD) continuum begins with a long asymptomatic or preclinical stage, during which amyloid beta (Aß) is accumulating for more than a decade prior to widespread cortical tauopathy, neurodegeneration, and manifestation of clinical symptoms. The AHEAD 3-45 Study (BAN2401-G000-303) is testing whether intervention with lecanemab (BAN2401), a humanized immunoglobulin 1 (IgG1) monoclonal antibody that preferentially targets soluble aggregated Aß, initiated during this asymptomatic stage can slow biomarker changes and/or cognitive decline. The AHEAD 3-45 Study is conducted as a Public-Private Partnership of the Alzheimer's Clinical Trial Consortium (ACTC), funded by the National Institute on Aging, National Institutes of Health (NIH), and Eisai Inc. METHODS: The AHEAD 3-45 Study was launched on July 14, 2020, and consists of two sister trials (A3 and A45) in cognitively unimpaired (CU) individuals ages 55 to 80 with specific dosing regimens tailored to baseline brain amyloid levels on screening positron emission tomography (PET) scans: intermediate amyloid (≈20 to 40 Centiloids) for A3 and elevated amyloid (>40 Centiloids) for A45. Both trials are being conducted under a single protocol, with a shared screening process and common schedule of assessments. A3 is a Phase 2 trial with PET-imaging end points, whereas A45 is a Phase 3 trial with a cognitive composite primary end point. The treatment period is 4 years. The study utilizes innovative approaches to enriching the sample with individuals who have elevated brain amyloid. These include recruiting from the Trial-Ready Cohort for Preclinical and Prodromal Alzheimer's disease (TRC-PAD), the Australian Dementia Network (ADNeT) Registry, and the Japanese Trial Ready Cohort (J-TRC), as well as incorporation of plasma screening with the C2N mass spectrometry platform to quantitate the Aß 42/40 ratio (Aß 42/40), which has been shown previously to reliably identify cognitively normal participants not likely to have elevated brain amyloid levels. A blood sample collected at a brief first visit is utilized to "screen out" individuals who are less likely to have elevated brain amyloid, and to determine the participant's eligibility to proceed to PET imaging. Eligibility to randomize into the A3 Trial or A45 Trial is based on the screening PET imaging results. RESULT: The focus of this article is on the innovative design of the study. DISCUSSION: The AHEAD 3-45 Study will test whether with lecanemab (BAN2401) can slow the accumulation of tau and prevent the cognitive decline associated with AD during its preclinical stage. It is specifically targeting both the preclinical and the early preclinical (intermediate amyloid) stages of AD and is the first secondary prevention trial to employ plasma-based biomarkers to accelerate the screening process and potentially substantially reduce the number of screening PET scans.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Tauopathies , Humans , Middle Aged , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/metabolism , Australia , Tauopathies/metabolism , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography , Cognitive Dysfunction/metabolism , Biomarkers/metabolism , tau Proteins/metabolism
4.
N Engl J Med ; 388(1): 9-21, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36449413

ABSTRACT

BACKGROUND: The accumulation of soluble and insoluble aggregated amyloid-beta (Aß) may initiate or potentiate pathologic processes in Alzheimer's disease. Lecanemab, a humanized IgG1 monoclonal antibody that binds with high affinity to Aß soluble protofibrils, is being tested in persons with early Alzheimer's disease. METHODS: We conducted an 18-month, multicenter, double-blind, phase 3 trial involving persons 50 to 90 years of age with early Alzheimer's disease (mild cognitive impairment or mild dementia due to Alzheimer's disease) with evidence of amyloid on positron-emission tomography (PET) or by cerebrospinal fluid testing. Participants were randomly assigned in a 1:1 ratio to receive intravenous lecanemab (10 mg per kilogram of body weight every 2 weeks) or placebo. The primary end point was the change from baseline at 18 months in the score on the Clinical Dementia Rating-Sum of Boxes (CDR-SB; range, 0 to 18, with higher scores indicating greater impairment). Key secondary end points were the change in amyloid burden on PET, the score on the 14-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog14; range, 0 to 90; higher scores indicate greater impairment), the Alzheimer's Disease Composite Score (ADCOMS; range, 0 to 1.97; higher scores indicate greater impairment), and the score on the Alzheimer's Disease Cooperative Study-Activities of Daily Living Scale for Mild Cognitive Impairment (ADCS-MCI-ADL; range, 0 to 53; lower scores indicate greater impairment). RESULTS: A total of 1795 participants were enrolled, with 898 assigned to receive lecanemab and 897 to receive placebo. The mean CDR-SB score at baseline was approximately 3.2 in both groups. The adjusted least-squares mean change from baseline at 18 months was 1.21 with lecanemab and 1.66 with placebo (difference, -0.45; 95% confidence interval [CI], -0.67 to -0.23; P<0.001). In a substudy involving 698 participants, there were greater reductions in brain amyloid burden with lecanemab than with placebo (difference, -59.1 centiloids; 95% CI, -62.6 to -55.6). Other mean differences between the two groups in the change from baseline favoring lecanemab were as follows: for the ADAS-cog14 score, -1.44 (95% CI, -2.27 to -0.61; P<0.001); for the ADCOMS, -0.050 (95% CI, -0.074 to -0.027; P<0.001); and for the ADCS-MCI-ADL score, 2.0 (95% CI, 1.2 to 2.8; P<0.001). Lecanemab resulted in infusion-related reactions in 26.4% of the participants and amyloid-related imaging abnormalities with edema or effusions in 12.6%. CONCLUSIONS: Lecanemab reduced markers of amyloid in early Alzheimer's disease and resulted in moderately less decline on measures of cognition and function than placebo at 18 months but was associated with adverse events. Longer trials are warranted to determine the efficacy and safety of lecanemab in early Alzheimer's disease. (Funded by Eisai and Biogen; Clarity AD ClinicalTrials.gov number, NCT03887455.).


Subject(s)
Alzheimer Disease , Antibodies, Monoclonal, Humanized , Nootropic Agents , Humans , Activities of Daily Living , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/cerebrospinal fluid , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Cognition/drug effects , Double-Blind Method , Nootropic Agents/adverse effects , Nootropic Agents/pharmacology , Nootropic Agents/therapeutic use
5.
Alzheimers Res Ther ; 14(1): 182, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36482412

ABSTRACT

BACKGROUND: Lecanemab (BAN2401) is a humanized IgG1 monoclonal antibody that preferentially targets soluble aggregated Aß species (protofibrils) with activity at insoluble fibrils and slowed clinical decline in an 18-month phase 2 proof-of-concept study (Study 201; ClinicalTrials.gov NCT01767311) in 856 subjects with early Alzheimer's disease (AD). In this trial, subjects were randomized to five lecanemab dose regimens or placebo. The primary efficacy endpoint was change from baseline in the Alzheimer's Disease Composite Score (ADCOMS) at 12 months with Bayesian analyses. The key secondary endpoints were ADCOMS at 18 months and Clinical Dementia Rating-Sum-of-Boxes (CDR-SB) and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog14) at 18 months. The results have been published previously. Herein, we describe the results of sensitivity analyses evaluating the consistency of the lecanemab efficacy results in Study 201 at the identified dose, the ED90, across multiple statistical methods and multiple endpoints over the duration of the study. METHODS: The protocol-specified analysis model was a mixed model for repeated measures (MMRM). Sensitivity analyses address the consistency of the conclusions using multiple statistical methods. These include a disease progression model (DPM), a natural cubic spline (NCS) model, a quadratic mixed model (QMM), and 2 MMRMs with additional covariates. RESULTS: The sensitivity analyses showed positive lecanemab treatment effects for all endpoints and all statistical models considered. The protocol-specified ADCOMS analysis showed a 29.7% slower decline than placebo for ADCOMS at 18 months. The various other analyses of 3 key endpoints showed declines ranging from 26.5 to 55.9%. The results at 12 months are also consistent with those at 18 months. CONCLUSIONS: The conclusion of the primary analysis of the lecanemab Study 201 is strengthened by the consistently positive conclusions across multiple statistical models, across efficacy endpoints, and over time, despite missing data. The 18-month data from this trial was utilized in the design of the confirmatory phase 3 trial (Clarity AD) and allowed for proper powering for multiple, robust outcomes.


Subject(s)
Alzheimer Disease , Humans , Bayes Theorem , Alzheimer Disease/drug therapy , Proof of Concept Study , Research Design
6.
Alzheimers Res Ther ; 14(1): 191, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36544184

ABSTRACT

BACKGROUND: Lecanemab, a humanized IgG1 monoclonal antibody that targets soluble aggregated Aß species (protofibrils), has demonstrated robust brain fibrillar amyloid reduction and slowing of clinical decline in early AD. The objective of this analysis is to report results from study 201 blinded period (core), the open-label extension (OLE), and gap period (between core and OLE) supporting the effectiveness of lecanemab. METHODS: The lecanemab study 201 core was a double-blind, randomized, placebo-controlled study of 856 patients randomized to one of five dose regimens or placebo. An OLE of study 201 was initiated to allow patients to receive open-label lecanemab 10mg/kg biweekly for up to 24 months, with an intervening off-treatment period (gap period) ranging from 9 to 59 months (mean 24 months). RESULTS: At 12 and 18 months of treatment in the core, lecanemab 10 mg/kg biweekly demonstrated dose-dependent reductions of brain amyloid measured PET and corresponding changes in plasma biomarkers and slowing of cognitive decline. The rates of clinical progression during the gap were similar in lecanemab and placebo subjects, with clinical treatment differences maintained after discontinued dosing over an average of 24 months in the gap period. During the gap, plasma Aß42/40 ratio and p-tau181 levels began to return towards pre-randomization levels more quickly than amyloid PET. At OLE baseline, treatment differences vs placebo at 18 months in the randomized period were maintained across 3 clinical assessments. In the OLE, lecanemab 10 mg/kg biweekly treatment produced dose-dependent reductions in amyloid PET SUVr, improvements in plasma Aß42/40 ratio, and reductions in plasma p-tau181. CONCLUSIONS: Lecanemab treatment resulted in significant reduction in amyloid plaques and a slowing of clinical decline. Data indicate that rapid and pronounced amyloid reduction correlates with clinical benefit and potential disease-modifying effects, as well as the potential to use plasma biomarkers to monitor for lecanemab treatment effects. TRIAL REGISTRATION: ClinicalTrials.gov NCT01767311 .


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Brain/diagnostic imaging , Antibodies, Monoclonal, Humanized/therapeutic use , Biomarkers , Amyloidogenic Proteins , Cognition , Amyloid beta-Peptides
8.
Alzheimers Res Ther ; 13(1): 80, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33865446

ABSTRACT

BACKGROUND: Lecanemab (BAN2401), an IgG1 monoclonal antibody, preferentially targets soluble aggregated amyloid beta (Aß), with activity across oligomers, protofibrils, and insoluble fibrils. BAN2401-G000-201, a randomized double-blind clinical trial, utilized a Bayesian design with response-adaptive randomization to assess 3 doses across 2 regimens of lecanemab versus placebo in early Alzheimer's disease, mild cognitive impairment due to Alzheimer's disease (AD) and mild AD dementia. METHODS: BAN2401-G000-201 aimed to establish the effective dose 90% (ED90), defined as the simplest dose that achieves ≥90% of the maximum treatment effect. The primary endpoint was Bayesian analysis of 12-month clinical change on the Alzheimer's Disease Composite Score (ADCOMS) for the ED90 dose, which required an 80% probability of ≥25% clinical reduction in decline versus placebo. Key secondary endpoints included 18-month Bayesian and frequentist analyses of brain amyloid reduction using positron emission tomography; clinical decline on ADCOMS, Clinical Dementia Rating-Sum-of-Boxes (CDR-SB), and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog14); changes in CSF core biomarkers; and total hippocampal volume (HV) using volumetric magnetic resonance imaging. RESULTS: A total of 854 randomized subjects were treated (lecanemab, 609; placebo, 245). At 12 months, the 10-mg/kg biweekly ED90 dose showed a 64% probability to be better than placebo by 25% on ADCOMS, which missed the 80% threshold for the primary outcome. At 18 months, 10-mg/kg biweekly lecanemab reduced brain amyloid (-0.306 SUVr units) while showing a drug-placebo difference in favor of active treatment by 27% and 30% on ADCOMS, 56% and 47% on ADAS-Cog14, and 33% and 26% on CDR-SB versus placebo according to Bayesian and frequentist analyses, respectively. CSF biomarkers were supportive of a treatment effect. Lecanemab was well-tolerated with 9.9% incidence of amyloid-related imaging abnormalities-edema/effusion at 10 mg/kg biweekly. CONCLUSIONS: BAN2401-G000-201 did not meet the 12-month primary endpoint. However, prespecified 18-month Bayesian and frequentist analyses demonstrated reduction in brain amyloid accompanied by a consistent reduction of clinical decline across several clinical and biomarker endpoints. A phase 3 study (Clarity AD) in early Alzheimer's disease is underway. TRIAL REGISTRATION: Clinical Trials.gov NCT01767311 .


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Bayes Theorem , Brain , Double-Blind Method , Humans
9.
PLoS One ; 6(8): e24269, 2011.
Article in English | MEDLINE | ID: mdl-21904622

ABSTRACT

OBJECTIVES: Genetic defects leading to the reduction of the survival motor neuron protein (SMN) are a causal factor for Spinal Muscular Atrophy (SMA). While there are a number of therapies under evaluation as potential treatments for SMA, there is a critical lack of a biomarker method for assessing efficacy of therapeutic interventions, particularly those targeting upregulation of SMN protein levels. Towards this end we have engaged in developing an immunoassay capable of accurately measuring SMN protein levels in blood, specifically in peripheral blood mononuclear cells (PBMCs), as a tool for validating SMN protein as a biomarker in SMA. METHODS: A sandwich enzyme-linked immunosorbent assay (ELISA) was developed and validated for measuring SMN protein in human PBMCs and other cell lysates. Protocols for detection and extraction of SMN from transgenic SMA mouse tissues were also developed. RESULTS: The assay sensitivity for human SMN is 50 pg/mL. Initial analysis reveals that PBMCs yield enough SMN to analyze from blood volumes of less than 1 mL, and SMA Type I patients' PBMCs show ∼90% reduction of SMN protein compared to normal adults. The ELISA can reliably quantify SMN protein in human and mouse PBMCs and muscle, as well as brain, and spinal cord from a mouse model of severe SMA. CONCLUSIONS: This SMN ELISA assay enables the reliable, quantitative and rapid measurement of SMN in healthy human and SMA patient PBMCs, muscle and fibroblasts. SMN was also detected in several tissues in a mouse model of SMA, as well as in wildtype mouse tissues. This SMN ELISA has general translational applicability to both preclinical and clinical research efforts.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Muscular Atrophy, Spinal/metabolism , SMN Complex Proteins/analysis , Adult , Aged , Aged, 80 and over , Animals , Cells, Cultured , Female , Humans , In Vitro Techniques , Male , Mice , Reproducibility of Results , SMN Complex Proteins/metabolism
10.
Eur J Pharmacol ; 602(1): 66-72, 2009 Jan 05.
Article in English | MEDLINE | ID: mdl-19027732

ABSTRACT

Antidepressant treatment of two or more weeks in rats has been shown to enhance the locomotor-stimulating effects of dopamine D(2)/D(3) receptor agonists. This action has been attributed to an increased sensitivity of postsynaptic dopamine receptors in the nucleus accumbens, thought to represent an essential mechanism by which antidepressants act therapeutically to enhance reward and motivation. We tested whether the melanin-concentrating hormone receptor(1) (MCH(1)) antagonist SNAP 94847, reported to have antidepressant-like activity in several preclinical behavioral models, mimics this key feature of established antidepressants. Locomotor responses to the dopamine D(2)/D(3) agonist quinpirole following acute or chronic administration of fluoxetine (18 mg/kg/day) or SNAP 94847 (20 mg/kg/day) were assessed in habituated Sprague-Dawley rats, as well as BALB/c and CD-1 mice. Rats showed a significant increase in quinpirole-induced locomotor activity following chronic (2 weeks), but not acute (1 h) fluoxetine or SNAP 94847 administration. BALB/c mice treated for 21 days with fluoxetine or SNAP 94847 showed marked increases in quinpirole-induced locomotor activity, with the onset of hyper-locomotion appearing earlier in the time course after SNAP 94847 compared to fluoxetine. Administration of either compound for 7 days was also sufficient to augment the quinpirole response in BALB/c mice. Fluoxetine and SNAP 94847 (21 days) failed to modify quinpirole responses in CD-1 mice, and the compounds were ineffective after acute administration in both mouse strains. This report demonstrates in two rodent species that chronic treatment with an MCH(1) receptor antagonist, as with clinically proven antidepressants, produces sensitization to the locomotor effects of dopamine D(2)/D(3) agonists.


Subject(s)
Antidepressive Agents/pharmacology , Piperidines/pharmacology , Receptors, Dopamine D2/agonists , Receptors, Dopamine D3/agonists , Receptors, Somatostatin/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Fluoxetine/pharmacology , Locomotion/drug effects , Locomotion/physiology , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Time Factors
11.
Neuropharmacology ; 50(6): 755-60, 2006 May.
Article in English | MEDLINE | ID: mdl-16427661

ABSTRACT

Atomoxetine is a selective inhibitor of norepinephrine transporters and is currently being used in the pharmacotherapy of attention deficit/hyperactivity disorder (ADHD). We have previously shown that atomoxetine increased extracellular (EX) concentrations of norepinephrine and dopamine in prefrontal cortex, but unlike the psychostimulant methylphenidate, did not alter dopamine(EX) in nucleus accumbens or striatum. Using the in vivo microdialysis technique in rat, we investigated the effects of atomoxetine on norepinephrine(EX) and dopamine(EX) concentrations in several other brain regions and also evaluated the role of inhibitory autoreceptors on atomoxetine-induced increases of norepinephrine(EX) concentrations. Atomoxetine (3mg/kg i.p.) increased norepinephrine(EX) robustly in prefrontal cortex, occipital cortex, lateral hypothalamus, dorsal hippocampus and cerebellum, suggesting that norepinephrine(EX) is increased throughout the brain by atomoxetine. In lateral hypothalamus and occipital cortex where dopamine(EX) was quantifiable, atomoxetine did not increase dopamine(EX) concentrations, in contrast to parallel increases of norepinephrine(EX) and dopamine(EX) in prefrontal cortex, indicating a unique effect in prefrontal cortex. Administration of the alpha(2)-adrenergic antagonist idazoxan 1h after atomoxetine resulted in increases in prefrontal cortical norepinephrine efflux greater than either compound alone, indicating an attenuating effect of the adrenergic autoreceptors on norepinephrine efflux.


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Brain/drug effects , Dopamine/metabolism , Extracellular Space/drug effects , Norepinephrine/metabolism , Propylamines/pharmacology , Analysis of Variance , Animals , Atomoxetine Hydrochloride , Male , Microdialysis/methods , Rats , Rats, Sprague-Dawley , Time Factors
12.
Proc Natl Acad Sci U S A ; 102(48): 17489-94, 2005 Nov 29.
Article in English | MEDLINE | ID: mdl-16287967

ABSTRACT

The neuropeptide galanin mediates its effects through the receptor subtypes Gal(1), Gal(2), and Gal(3) and has been implicated in anxiety- and depression-related behaviors. Nevertheless, the receptor subtypes relevant to these behaviors are not known because of the lack of available galanin-selective ligands. In this article, we use behavioral, neurochemical, and electrophysiological approaches to investigate the anxiolytic- and antidepressant-like effects of two potent small-molecule, Gal(3)-selective antagonists, SNAP 37889 and the more soluble analog SNAP 398299. Acute administration of SNAP 37889 or SNAP 398299 enhanced rat social interaction. Furthermore, acute SNAP 37889 was also shown to reduce guinea pig vocalizations after maternal separation, to attenuate stress-induced hyperthermia in mice, to increase punished drinking in rats, and to decrease immobility and increase swimming time during forced swim tests with rats. Moreover, SNAP 37889 increased the social interaction time after 14 days of treatment and maintained its antidepressant effects during forced swim tests with rats after 21 days of treatment. In microdialysis studies, SNAP 37889 partially antagonized the galanin-evoked reduction in hippocampal serotonin (5-hydroxytryptamine, 5-HT), as did the 5-HT(1A) receptor antagonist WAY100635. Their combination produced a complete reversal of the effect of galanin. SNAP 398299 partially reversed the galanin-evoked inhibition of dorsal raphe cell firing and galanin-evoked hyperpolarizing currents. These results indicate that Gal(3)-selective antagonists produce anxiolytic- and antidepressant-like effects, possibly by attenuating the inhibitory influence of galanin on 5-HT transmission at the level of the dorsal raphe nucleus.


Subject(s)
Behavior, Animal/drug effects , Hippocampus/metabolism , Indoles/pharmacology , Pyrrolidines/pharmacology , Receptor, Galanin, Type 3/antagonists & inhibitors , Analysis of Variance , Animals , Cell Line , Electrophysiology , Guinea Pigs , Humans , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Piperazines/pharmacology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Social Behavior , Vocalization, Animal/drug effects
13.
Nat Rev Drug Discov ; 4(2): 131-44, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15665858

ABSTRACT

Anxiety and stress disorders are the most commonly occurring of all mental illnesses, and current treatments are less than satisfactory. So, the discovery of novel approaches to treat anxiety disorders remains an important area of neuroscience research. Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system, and G-protein-coupled metabotropic glutamate (mGlu) receptors function to regulate excitability via pre- and postsynaptic mechanisms. Various mGlu receptor subtypes, including group I (mGlu(1) and mGlu(5)), group II (mGlu(2) and mGlu(3)), and group III (mGlu(4), mGlu(7) and mGlu(8)) receptors, specifically modulate excitability within crucial brain structures involved in anxiety states. In addition, agonists for group II (mGlu(2/3)) receptors and antagonists for group I (in particular mGlu(5)) receptors have shown activity in animal and/or human conditions of fear, anxiety or stress. These studies indicate that metabotropic glutamate receptors are interesting new targets to treat anxiety disorders in humans.


Subject(s)
Anxiety/drug therapy , Receptors, Metabotropic Glutamate/drug effects , Receptors, Metabotropic Glutamate/therapeutic use , Stress Disorders, Traumatic/drug therapy , Animals , Humans , Stress Disorders, Traumatic/classification
14.
J Neurochem ; 88(1): 194-202, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14675163

ABSTRACT

The metabotropic glutamate (mGlu2/3) receptor agonist, LY354740, exhibits anxiolytic-like properties in a number of rodent models. The present study utilized in vivo microdialysis to examine the effects of LY354740 on extracellular monoamine levels in the medial prefrontal cortex (mPFC) of animals subjected to 30 min immobilization stress. Immobilization stress significantly elevated extracellular levels of noradrenaline (NA) and dopamine (DA) in the mPFC, while systemic administration of LY354740 (30 mg/kg, s.c.) significantly attenuated immobilization-induced increases in both NA and DA. Reverse-dialysis of LY354740 (30 microm) into the mPFC significantly attenuated immobilization-induced increases in NA, but not DA without affecting basal levels of either amine. In separate studies in the presence of citalopram (1 microm; reverse dialysis into the mPFC), systemic administration of LY354740 attenuated immobilization-induced increases in NA and DA, but had no effect on serotonin (5-HT) levels. Co-administration of the selective mGlu2/3 receptor antagonist, LY341495, partially or fully reversed the attenuation in NA and DA levels produced by LY354740, respectively. Taken together, these data suggest that LY354740 may produce anti-stress actions, in part, by blocking stress-related increases in catecholamines in the mPFC via mGlu2/3 receptor stimulation.


Subject(s)
Bridged Bicyclo Compounds/pharmacology , Dopamine/metabolism , Norepinephrine/metabolism , Prefrontal Cortex/metabolism , Receptors, Metabotropic Glutamate/agonists , Amino Acids/pharmacology , Animals , Catecholamines/metabolism , Citalopram/pharmacology , Dopamine/analysis , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Extracellular Fluid/chemistry , Extracellular Fluid/metabolism , Male , Microdialysis , Norepinephrine/analysis , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/metabolism , Restraint, Physical , Selective Serotonin Reuptake Inhibitors/pharmacology , Stress, Physiological/metabolism , Xanthenes/pharmacology
15.
Ann N Y Acad Sci ; 1003: 309-17, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14684454

ABSTRACT

Evidence suggests that glutamatergic neuronal transmission is involved in psychiatric and neurological disorders and that drugs that target glutamate systems may serve as novel therapeutics in humans. For example, agonists for group II mGlu receptors (mGlu2 and mGlu3) have been shown to be anxiolytic in certain animal models and have shown promise in early human trials. mGlu2/3 receptor agonists also block the neurochemical and behavioral actions of psychotogens, such as phencyclidine and amphetamine in rodents, suggesting that they may be useful to treat psychosis in humans. Recently, we have used in vivo microdialysis and behavioral methods to further explore the potential antipsychotic and antistress actions of mGlu2/3 receptor agonists in rats. In subjects undergoing brain microdialysis of the nucleus accumbens shell, we have shown that LY379268 (3 mg/kg s.c.) (a systemically active mGlu2/3 receptor agonist) blocks PCP-induced locomotor activations for approximately 3 hours. In these animals, PCP-induced dopamine release was reduced, but only in a transient fashion (15-75 min). PCP-induced norepinephrine release was also reduced, but unlike dopamine, in a manner that was temporally correlated with the reduction of PCP-induced behaviors. In separate experiments in rats not undergoing microdialysis, the alpha2-adrenergic receptor agonist, clonidine, was shown to block PCP behaviors, and the norepinephrine reuptake inhibitor reboxetine was shown to exacerbate PCP-induced ambulations. In the latter study, LY379268 pretreatment effectively reversed the PCP behaviors in both control and reboxetine-treated animals. These data support a role for noradrenergic neurotransmission in the actions of drugs such as phencyclidine and suggest that stress pathways associated with these drugs can be normalized by mGlu2/3 receptor activation.


Subject(s)
Antipsychotic Agents/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Norepinephrine/physiology , Phencyclidine/pharmacology , Receptors, Metabotropic Glutamate/agonists , Stress, Psychological/drug therapy , Synaptic Transmission/physiology , Humans , Phencyclidine/antagonists & inhibitors , Stress, Psychological/physiopathology , Synaptic Transmission/drug effects
16.
J Pharmacol Exp Ther ; 303(3): 919-27, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12438510

ABSTRACT

Recent studies have indicated that the selective group II metabotropic glutamate (mGlu) receptor agonist (-)-2-oxa-4-aminobicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY379268) shares common biochemical and pharmacological effects with the atypical antipsychotic clozapine. The present study aimed to further investigate these similarities (or differences) in monoamine-depleted animals by using the phencyclidine (PCP) model. Animals were pretreated 24 h before PCP administration with (i.p.) vehicle, alpha-methyl-DL-p-tyrosine methyl ester (alpha-MPT; 400 mg/kg), or DL-p-chlorophenyl-alanine methyl ester (PCPA; 300 mg/kg) injections. alpha-MPT and PCPA pretreatment significantly and selectively reduced catecholamine (dopamine and norepinepherine) or 5-hydroxytryptamine (5-HT, serotonin) and 5-hydroxyindoleacetic acid levels, respectively, in whole brain tissue. Both LY379268 and clozapine (s.c.) blocked PCP-evoked ambulatory activity and fine movements in control, alpha-MPT-, and PCPA-treated animals. In contrast, the typical antipsychotic haloperidol (s.c.) attenuated PCP behaviors in control and PCPA-pretreated animals, but was without effect in subjects pretreated with alpha-MPT. The alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/kainate-selective antagonist (3S,4aR,6R,8aR)-6-[2-(1(2)OH-tetrazole-6-yl)ethyl]decahydroisoquinoline-3-carboxylic acid (LY293558) attenuated locomotor activity in alpha-MPT-treated animals only, whereas the 5-HT(2A/2C)-selective antagonist ketanserin was effective at reducing ambulations and fine movements in control and alpha-MPT-treated animals. Taken together, these data indicate an important role for glutamatergic and serotonergic mechanisms for PCP-evoked behaviors in catecholamine-depleted animals and suggest that like clozapine, LY379268 is more effective than typical antipsychotics in these models. This study further supports the potential use of group II mGlu agonists as novel therapeutic agents in the treatment of schizophrenia.


Subject(s)
Catecholamines/deficiency , Clozapine/pharmacology , Motor Activity/drug effects , Phencyclidine/pharmacology , Receptors, Metabotropic Glutamate/agonists , Serotonin/deficiency , Amino Acids/pharmacology , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Catecholamines/antagonists & inhibitors , Injections, Subcutaneous , Male , Motor Activity/physiology , Phencyclidine/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/physiology
17.
J Neurosci ; 22(20): 9134-41, 2002 Oct 15.
Article in English | MEDLINE | ID: mdl-12388621

ABSTRACT

Basal extracellular glutamate sampled in vivo is present in micromolar concentrations in the extracellular space outside the synaptic cleft, and neither the origin nor the function of this glutamate is known. This report reveals that blockade of glutamate release from the cystine-glutamate antiporter produced a significant decrease (60%) in extrasynaptic glutamate levels in the rat striatum, whereas blockade of voltage-dependent Na+ and Ca2+ channels produced relatively minimal changes (0-30%). This indicates that the primary origin of in vivo extrasynaptic glutamate in the striatum arises from nonvesicular glutamate release by the cystine-glutamate antiporter. By measuring [35S]cystine uptake, it was shown that similar to vesicular release, the activity of the cystine-glutamate antiporter is negatively regulated by group II metabotropic glutamate receptors (mGluR2/3) via a cAMP-dependent protein kinase mechanism. Extracellular glutamate derived from the antiporter was shown to regulate extracellular levels of glutamate and dopamine. Infusion of the mGluR2/3 antagonist (RS)-1-amino-5-phosphonoindan-1-carboxylic acid (APICA) increased extracellular glutamate levels, and previous blockade of the antiporter prevented the APICA-induced rise in extracellular glutamate. This suggests that glutamate released from the antiporter is a source of endogenous tone on mGluR2/3. Blockade of the antiporter also produced an increase in extracellular dopamine that was reversed by infusing the mGluR2/3 agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxlylate, indicating that antiporter-derived glutamate can modulate dopamine transmission via mGluR2/3 heteroreceptors. These results suggest that nonvesicular release from the cystine-glutamate antiporter is the primary source of in vivo extracellular glutamate and that this glutamate can modulate both glutamate and dopamine transmission.


Subject(s)
Glutamic Acid/metabolism , Neurons/metabolism , Synapses/metabolism , Animals , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Corpus Striatum/cytology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dopamine/analysis , Dopamine/metabolism , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Extracellular Space/chemistry , Extracellular Space/metabolism , Glutamic Acid/analysis , In Vitro Techniques , Male , Microdialysis , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...