Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 119: 261-271, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570102

ABSTRACT

Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP). Previously, we have shown that estrogen modulates sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP. The estrogen-dependent role of TNFR1-mediated supraspinal neuronal circuitry in CNP remains unknown. In this study, we interrogated the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that mechanical hypersensitivity induced by chronic constriction injury (CCI) decreases over time in males, but not in females. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38MAPK and NF-κB activation in male cortical tissue; however, p38MAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed a similar recovery from acute pain in male mice following CCI when p38αMAPK was knocked out of supraspinal Nex + neurons (NexCreERT2::p38αMAPKf/f), while chronic pain developed in female mice. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor ß (ER ß) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lends therapeutic relief to females following CCI comparable to the response evaluated in male mice. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER ß interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.


Subject(s)
Chronic Pain , Estrogens , Neuralgia , Neurons , Receptors, Tumor Necrosis Factor, Type I , Signal Transduction , Animals , Neuralgia/metabolism , Male , Female , Mice , Estrogens/metabolism , Estrogens/pharmacology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Neurons/metabolism , Chronic Pain/metabolism , Signal Transduction/physiology , NF-kappa B/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Hyperalgesia/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism
2.
Brain Res Bull ; 207: 110885, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38246200

ABSTRACT

Multiple sclerosis (MS), a demyelinating autoimmune disease of the central nervous system (CNS), predominately affects females compared to males. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, signaling through TNF receptor 1 contributes to inflammatory disease pathogenesis. In contrast, TNF receptor 2 signaling is neuroprotective. Current anti-TNF MS therapies are shown to be detrimental to patients due to pleiotropic effects on both pro- and anti-inflammatory functions. Using a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, we systemically administered a TNFR2 agonist (p53-sc-mTNFR2) to investigate behavioral and pathophysiological changes in both female and male mice. Our data shows that TNFR2 activation alleviates motor and sensory symptoms in females. However, in males, the agonist only alleviates sensory symptoms and not motor. nPTX EAE induction in TNFR2 global knockout mice caused exacerbated motor symptoms in females along with an earlier day of onset, but not in males. Our data demonstrates that TNFR2 agonist efficacy is sex-specific for alleviation of motor symptoms, however, it effectively reduces mechanical hypersensitivity in both females and males. Altogether, these data support the therapeutic promise TNFR2 agonism holds as an MS therapeutic and, more broadly, to treat central neuropathic pain.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Male , Female , Mice , Animals , Receptors, Tumor Necrosis Factor, Type II/agonists , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/therapeutic use , Tumor Necrosis Factor Inhibitors/therapeutic use , Mice, Inbred C57BL , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Myelin Proteins , Tumor Necrosis Factor-alpha/metabolism , Mice, Knockout
3.
Res Sq ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37674712

ABSTRACT

Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP) [1-4]. To test the hypothesis that supraspinal circuitry is critical to pain chronification, we studied the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that following chronic constriction injury (CCI), pain resolves in males; however, female acute pain transitions to chronic. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38αMAPK and NF-κB activation in male cortical tissue; however, p38αMAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed similar behavioral results following CCI in NexCreERT2::p38αMAPKf/f mice. Previously, we established estrogen's ability to modulate sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP [5-9]. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor ß (ER ß) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lend "male-like" therapeutic relief to females following CCI. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER ß interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.

4.
Oxid Med Cell Longev ; 2020: 7191080, 2020.
Article in English | MEDLINE | ID: mdl-32454942

ABSTRACT

CNS inflammation is a major driver of MS pathology. Differential immune responses, including the adaptive and the innate immune system, are observed at various stages of MS and drive disease development and progression. Next to these immune-mediated mechanisms, other mediators contribute to MS pathology. These include immune-independent cell death of oligodendrocytes and neurons as well as oxidative stress-induced tissue damage. In particular, the complex influence of oxidative stress on inflammation and vice versa makes therapeutic interference complex. All approved MS therapeutics work by modulating the autoimmune response. However, despite substantial developments in the treatment of the relapsing-remitting form of MS, approved therapies for the progressive forms of MS as well as for MS-associated concomitants are limited and much needed. Here, we summarize the contribution of inflammation and oxidative stress to MS pathology and discuss consequences for MS therapy development.


Subject(s)
Inflammation/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/therapy , Oxidative Stress , Animals , Clinical Trials as Topic , Humans , Mitochondria/pathology , Multiple Sclerosis/epidemiology
5.
J Neurosci ; 40(2): 478-492, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31754014

ABSTRACT

Spinal cord injury (SCI) disrupts critical physiological systems, including the cardiovascular and immune system. Plasticity of spinal circuits below the injury results in abnormal, heightened sympathetic responses, such as extreme, sudden hypertension that hallmarks life-threatening autonomic dysreflexia. Moreover, such sympathetic hyperreflexia detrimentally impacts other effector organs, including the spleen, resulting in spinal cord injury-induced immunodeficiency. Consequently, infection is a leading cause of mortality after SCI. Unfortunately, there are no current treatments that prophylactically limit sympathetic hyperreflexia to prevent subsequent effector organ dysfunction. The cytokine soluble tumor necrosis factor α (sTNFα) is upregulated in the CNS within minutes after SCI and remains elevated. Here, we report that commencing intrathecal administration of XPro1595, an inhibitor of sTNFα, at a clinically feasible, postinjury time point (i.e., 3 d after complete SCI) sufficiently diminishes maladaptive plasticity within the spinal sympathetic reflex circuit. This results in less severe autonomic dysreflexia, a real-time gauge of sympathetic hyperreflexia, for months postinjury. Remarkably, delayed delivery of the sTNFα inhibitor prevents sympathetic hyperreflexia-associated splenic atrophy and loss of leukocytes to dramatically improve the endogenous ability of chronic SCI rats to fight off pneumonia, a common cause of hospitalization after injury. The improved immune function with XPro1595 correlates with less noradrenergic fiber sprouting and normalized norepinephrine levels in the spleen, indicating that heightened, central sTNFα signaling drives peripheral, norepinephrine-mediated organ dysfunction, a novel mechanism of action. Thus, our preclinical study supports intrathecally targeting sTNFα as a viable strategy to broadly attenuate sympathetic dysregulation, thereby improving cardiovascular regulation and immunity long after SCI.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) significantly disrupts immunity, thus increasing susceptibility to infection, a leading cause of morbidity in those living with SCI. Here, we report that commencing intrathecal administration of an inhibitor of the proinflammatory cytokine soluble tumor necrosis factor α days after an injury sufficiently diminishes autonomic dysreflexia, a real time gauge of sympathetic hyperreflexia, to prevent associated splenic atrophy. This dramatically improves the endogenous ability of chronically injured rats to fight off pneumonia, a common cause of hospitalization. This preclinical study could have a significant impact for broadly improving quality of life of SCI individuals.


Subject(s)
Autonomic Dysreflexia/etiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/immunology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Female , Injections, Spinal , Pneumonia, Bacterial/etiology , Pneumonia, Bacterial/prevention & control , Rats , Rats, Wistar , Spleen/drug effects , Spleen/immunology , Tumor Necrosis Factor-alpha/pharmacology
6.
Exp Neurol ; 323: 113061, 2020 01.
Article in English | MEDLINE | ID: mdl-31499065

ABSTRACT

Multiple sclerosis is an autoimmune disorder of the central nervous system (CNS) characterized by locomotor impairments, cognitive deficits, affective disorders, and chronic pain. Females are predominately affected by MS compared to males and develop motor symptoms earlier. However, key symptoms affect all patients regardless of sex. Previous studies have shown that demyelination and axonal damage play key roles in symptom development, but it is unclear why sex differences exist in MS onset, and effective symptom treatment is still lacking. We here used a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, to explore chronic symptoms and sex differences in CNS autoimmunity. We observed that, like in humans, female mice developed motor disease earlier than males. Further, changes in pre- and post-synaptic protein expression levels were observed in a sexually dimorphic manner with an overall shift towards excitatory signaling. Our data suggest that this shift towards excitatory signaling is achieved through different mechanisms in males and females. Altogether, our study helps to better understand sex-specific disease mechanisms to ultimately develop better diagnostic and treatment tools.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Sex Characteristics , Synapses/pathology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Synapses/metabolism
7.
Proc Natl Acad Sci U S A ; 116(34): 17045-17050, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31391309

ABSTRACT

Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that is linked to immune modulation and tissue regeneration. Here, we show that TNFR2 essentially promotes long-term pain resolution independently of sex. Genetic deletion of TNFR2 resulted in impaired neuronal regeneration and chronic nonresolving pain after chronic constriction injury (CCI). Further, pharmacological activation of TNFR2 using the TNFR2 agonist EHD2-sc-mTNFR2 in mice with chronic neuropathic pain promoted long-lasting pain recovery. TNFR2 agonist treatment reduced neuronal injury, alleviated peripheral and central inflammation, and promoted repolarization of central nervous system (CNS)-infiltrating myeloid cells into an antiinflammatory/reparative phenotype. Depletion of regulatory T cells (Tregs) delayed spontaneous pain recovery and abolished the therapeutic effect of EHD2-sc-mTNFR2 This study therefore reveals a function of TNFR2 in neuropathic pain recovery and demonstrates that both TNFR2 signaling and Tregs are essential for pain recovery after CCI. Therefore, therapeutic strategies based on the concept of enhancing TNFR2 signaling could be developed into a nonopioid therapy for the treatment of chronic neuropathic pain.


Subject(s)
Chronic Pain/immunology , Neuralgia/immunology , Receptors, Tumor Necrosis Factor, Type II/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Chronic Pain/genetics , Chronic Pain/pathology , Chronic Pain/therapy , Female , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Lymphocyte Depletion , Male , Mice , Mice, Knockout , Neuralgia/genetics , Neuralgia/pathology , Neuralgia/therapy , Receptors, Tumor Necrosis Factor, Type II/genetics , Signal Transduction/genetics , T-Lymphocytes, Regulatory/pathology
8.
Pain ; 160(4): 922-931, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30586024

ABSTRACT

Tumor necrosis factor (TNF) is a proinflammatory cytokine, which is involved in physiological and pathological processes and has been found to be crucial for pain development. In the current study, we were interested in the effects of blocking Tumor necrosis factor receptor 1 (TNFR1) signaling on neuropathic pain after peripheral nerve injury with the use of transgenic mice and pharmacological inhibition. We have previously shown that TNFR1 mice failed to develop neuropathic pain and depressive symptoms after chronic constriction injury (CCI). To investigate the therapeutic effects of inhibiting TNFR1 signaling after injury, we delivered a drug that inactivates soluble TNF (XPro1595). Inhibition of solTNF signaling resulted in an accelerated recovery from neuropathic pain in males, but not in females. To begin exploring a mechanism, we investigated changes in N-methyl-D-aspartate (NMDA) receptors because neuropathic pain has been shown to invoke an increase in glutamatergic signaling. In male mice, XPro1595 treatment reduces elevated NMDA receptor levels in the brain after injury, whereas in female mice, NMDA receptor levels decrease after CCI. We further show that estrogen inhibits the therapeutic response of XPro1595 in females. Our results suggest that TNFR1 signaling plays an essential role in pain induction after CCI in males but not in females.


Subject(s)
Neuralgia/drug therapy , Receptors, Tumor Necrosis Factor, Type I/metabolism , Sex Characteristics , Tumor Necrosis Factor-alpha/metabolism , Animals , Estrogens/therapeutic use , Female , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Male , Mice , Mice, Transgenic , Ovariectomy , Pain Measurement , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Signal Transduction/drug effects , Spinal Cord/metabolism , Tumor Necrosis Factor-alpha/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...