Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(9): 4325-4349, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30929436

ABSTRACT

5-Lipoxygenase (5-LO)-activating protein (FLAP) inhibitors have proven to attenuate 5-LO pathway activity and leukotriene production in human clinical trials. However, previous clinical candidates have been discontinued and the link between FLAP inhibition and outcome in inflammatory diseases remains to be established. We here describe a novel series of FLAP inhibitors identified from a screen of 10k compounds and the medicinal chemistry strategies undertaken to progress this series. Compound 4i showed good overall properties and a pIC50 hWBfree of 8.1 and an lipophilic ligand efficiency of 5.2. Target engagement for 4i was established in dogs using ex vivo measurement of leukotriene B4 (LTB4) levels in blood with good correlation to in vitro potency. A predicted human dose of 280 mg b.i.d. suggests a wide margin to any identified in vitro off-target effects and sufficient exposure to achieve an 80% reduction of LTB4 levels in humans. Compound 4i is progressed to preclinical in vivo safety studies.


Subject(s)
5-Lipoxygenase-Activating Protein Inhibitors/pharmacology , Cyclohexanes/pharmacology , Pyrazoles/pharmacology , 5-Lipoxygenase-Activating Protein Inhibitors/chemical synthesis , 5-Lipoxygenase-Activating Protein Inhibitors/toxicity , Animals , Caco-2 Cells , Coronary Artery Disease/drug therapy , Cyclohexanes/chemical synthesis , Cyclohexanes/toxicity , Dogs , Female , Humans , Leukotriene B4/antagonists & inhibitors , Male , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/toxicity , Rats, Sprague-Dawley , Structure-Activity Relationship
2.
J Med Chem ; 62(9): 4312-4324, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30869888

ABSTRACT

5-Lipoxygenase activating protein (FLAP) inhibitors attenuate 5-lipoxygenase pathway activity and reduce the production of proinflammatory and vasoactive leukotrienes. As such, they are hypothesized to have therapeutic benefit for the treatment of diseases that involve chronic inflammation including coronary artery disease. Herein, we disclose the medicinal chemistry discovery and the early clinical development of the FLAP inhibitor AZD5718 (12). Multiparameter optimization included securing adequate potency in human whole blood, navigation away from Ames mutagenic amine fragments while balancing metabolic stability and PK properties allowing for clinically relevant exposures after oral dosing. The superior safety profile of AZD5718 compared to earlier frontrunner compounds allowed us to perform a phase 1 clinical study in which AZD5718 demonstrated a dose dependent and greater than 90% suppression of leukotriene production over 24 h. Currently, AZD5718 is evaluated in a phase 2a study for treatment of coronary artery disease.


Subject(s)
5-Lipoxygenase-Activating Protein Inhibitors/therapeutic use , Coronary Artery Disease/drug therapy , Pyrazoles/therapeutic use , 5-Lipoxygenase-Activating Protein Inhibitors/chemistry , 5-Lipoxygenase-Activating Protein Inhibitors/pharmacokinetics , Animals , Cell Line, Tumor , Clinical Trials, Phase I as Topic , Dogs , Drug Discovery , Female , Humans , Leukotriene B4/antagonists & inhibitors , Male , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity Relationship
3.
J Med Chem ; 58(2): 897-911, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25478788

ABSTRACT

A drug discovery program in search of novel 5-lipoxygenase activating protein (FLAP) inhibitors focused on driving a reduction in lipophilicity with maintained or increased ligand lipophilic efficiency (LLE) compared to previously reported compounds led to the discovery of AZD6642 (15b). Introduction of a hydrophilic tetrahydrofuran (THF) ring at the stereogenic central carbon atom led to a significant shift in physicochemical property space. The structure-activity relationship exploration and optimization of DMPK properties leading to this compound are described in addition to pharmacokinetic analysis and an investigation of the pharmacokinetic (PK)-pharmacodynamic (PD) relationship based on ex vivo leukotriene B4 (LTB4) levels in dog. AZD6642 shows high specific potency and low lipophilicity, resulting in a selective and metabolically stable profile. On the basis of initial PK/PD relation measured, a low dose to human was predicted.


Subject(s)
5-Lipoxygenase-Activating Protein Inhibitors/chemical synthesis , Anti-Inflammatory Agents/chemical synthesis , Picolinic Acids/chemical synthesis , Pyrazines/chemical synthesis , 5-Lipoxygenase-Activating Protein Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Dogs , Drug Discovery , Humans , Picolinic Acids/pharmacology , Picolinic Acids/toxicity , Pyrazines/pharmacology , Pyrazines/toxicity , Rats , Solubility , Stereoisomerism , Structure-Activity Relationship , X-Ray Diffraction
4.
J Med Chem ; 51(14): 4315-20, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18578471

ABSTRACT

We have previously demonstrated that the prototypical GABA B receptor agonist baclofen inhibits transient lower esophageal sphincter relaxations (TLESRs), the most important mechanism for gastroesophageal reflux. Thus, GABA B agonists could be exploited for the treatment of gastroesophageal reflux disease. However, baclofen, which is used as an antispastic agent, and other previously known GABA B agonists can produce CNS side effects such as sedation, dizziness, nausea, and vomiting at higher doses. We now report the discovery of atypical GABA B agonists devoid of classical GABA B agonist related CNS side effects at therapeutic doses and the optimization of this type of compound for inhibition of TLESRs, which has resulted in a candidate drug ( R)- 7 (AZD3355) that is presently being evaluated in man.


Subject(s)
GABA Agonists/chemistry , GABA Agonists/pharmacology , GABA-B Receptor Agonists , Gastroesophageal Reflux/drug therapy , Animals , Dose-Response Relationship, Drug , GABA Agonists/therapeutic use , Humans , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Fast Atom Bombardment
5.
J Med Chem ; 45(19): 4282-99, 2002 Sep 12.
Article in English | MEDLINE | ID: mdl-12213070

ABSTRACT

2-[[(2-Pyridyl)methyl]thio]-1H-benzimidazoles (2, sulfides) exhibit antibacterial properties that are selective for Helicobacter spp., but they also have an inherent susceptibility to metabolic oxidation to furnish 2-[[(2-pyridyl)methyl]sulfinyl]-1H-benzimidazoles (1), which act as proton pump inhibitors (PPIs). We have discovered five compounds with retained antibacterial potency and selectivity in which the overall framework of the sulfides 2 could be kept intact while structural modifications were made to remove PPI activity. These compounds, 2-[((2-methyl-3-(2-(2-(2-methoxyethoxy)ethoxy)ethylthio)phenyl)methyl)thio]-1H-benzimidazole (79), 2-[((2-methyl-3-(2-(2-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)ethoxy)ethylthio)phenyl)methyl)thio]-1H-benzimidazole (80), 2-[((2-methyl-3-((2-morpholino)ethylthio)phenyl)methyl)thio]-1H-benzimidazole (86), 2-[[[2-methyl-3-[2-(2-methyl-5-nitroimidazol-1-yl)ethylthio]phenyl]methyl]thio]-1H-benzimidazole (88), and 2-[[[2-methyl-3-[2-(1,2,4-triazol-1-yl)ethylthio]phenyl]methyl]thio]-1H-benzimidazole (89), had minimum bactericidal concentrations (MBCs) of 0.5, 0.5, 1, 2, and 4 microg/mL, respectively. The reported compounds are bactericidal with MBCs within 1 order of magnitude of MBCs of clinically used antimicrobials such as clarithromycin (0.1 microg/mL) or metronidazole (2-4 microg/mL) but differ from these inasmuch that they have an extremely narrow spectrum activity and appear to be species specific.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Helicobacter pylori/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Microbial Sensitivity Tests , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 12(2): 197-200, 2002 Jan 21.
Article in English | MEDLINE | ID: mdl-11755353

ABSTRACT

A new series of 3-aryl pyridone based kappa opioid receptor agonists was designed and synthesised, based on an understanding of the classical kappa opioid receptor pharmacophore. The most potent of the new compounds were comparable to U-69,593 in receptor affinity, selectivity and functional agonist effect at the cloned human kappa opioid receptor.


Subject(s)
Pyridones/pharmacology , Receptors, Opioid, kappa/agonists , Humans , Protein Binding , Pyridones/chemistry , Pyridones/metabolism , Receptors, Opioid, kappa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...