Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
2.
Elife ; 102021 09 14.
Article in English | MEDLINE | ID: mdl-34519271

ABSTRACT

Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia known as Legionnaires' disease. The pathology associated with infection depends on bacterial delivery of effector proteins into the host via the membrane spanning Dot/Icm type IV secretion system (T4SS). We have determined sub-3.0 Å resolution maps of the Dot/Icm T4SS core complex by single particle cryo-EM. The high-resolution structural analysis has allowed us to identify proteins encoded outside the Dot/Icm genetic locus that contribute to the core T4SS structure. We can also now define two distinct areas of symmetry mismatch, one that connects the C18 periplasmic ring (PR) and the C13 outer membrane cap (OMC) and one that connects the C13 OMC with a 16-fold symmetric dome. Unexpectedly, the connection between the PR and OMC is DotH, with five copies sandwiched between the OMC and PR to accommodate the symmetry mismatch. Finally, we observe multiple conformations in the reconstructions that indicate flexibility within the structure.


Subject(s)
Bacterial Proteins/isolation & purification , Cryoelectron Microscopy/methods , Legionella pneumophila/chemistry , Bacterial Proteins/chemistry , Protein Conformation , Species Specificity , Type IV Secretion Systems/chemistry
3.
Mol Microbiol ; 115(4): 539-553, 2021 04.
Article in English | MEDLINE | ID: mdl-33034117

ABSTRACT

The production of the pyrimidine moiety in thiamine synthesis, 2-methyl-4-amino-5-hydroxymethylpyrimidine phosphate (HMP-P), has been described to proceed through the Thi5-dependent pathway in Saccharomyces cerevisiae and other yeast. Previous work found that ScThi5 functioned poorly in a heterologous context. Here we report a bacterial ortholog to the yeast HMP-P synthase (Thi5) was necessary for HMP synthesis in Legionella pneumophila. Unlike ScThi5, LpThi5 functioned in vivo in Salmonella enterica under multiple growth conditions. The protein LpThi5 is a dimer that binds pyridoxal-5'-phosphate (PLP), apparently without a solvent-exposed Schiff base. A small percentage of LpThi5 protein co-purifies with a bound molecule that can be converted to HMP. Analysis of variant proteins both in vivo and in vitro confirmed that residues in sequence motifs conserved across bacterial and eukaryotic orthologs modulate the function of LpThi5. IMPORTANCE: Thiamine is an essential vitamin for the vast majority of organisms. There are multiple strategies to synthesize and salvage this vitamin. The predominant pathway for synthesis of the pyrimidine moiety of thiamine involves the Fe-S cluster protein ThiC. An alternative pathway utilizes Thi5, a novel enzyme that uses PLP as a substrate. The Thi5-dependent pathway is poorly characterized in yeast and has not been characterized in Bacteria. Here we demonstrate that a Thi5-dependent pathway is necessary for thiamine biosynthesis in Legionella pneumophila and provide biochemical data to extend knowledge of the Thi5 enzyme, the corresponding biosynthetic pathway, and the role of metabolic network architecture in optimizing its function.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Legionella pneumophila/chemistry , Legionella pneumophila/enzymology , Legionella pneumophila/metabolism , Pyridoxal Phosphate/metabolism , Pyrimidines/biosynthesis , Amino Acid Sequence , Bacterial Proteins/genetics , Biosynthetic Pathways , Iron/metabolism , Iron-Sulfur Proteins/metabolism , Legionella pneumophila/genetics , Phylogeny , Protein Binding , Protein Conformation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Salmonella enterica/metabolism , Thiamine/biosynthesis
4.
Elife ; 92020 09 02.
Article in English | MEDLINE | ID: mdl-32876045

ABSTRACT

Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia Legionnaires' Disease. This infection and subsequent pathology require the Dot/Icm Type IV Secretion System (T4SS) to deliver effector proteins into host cells. Compared to prototypical T4SSs, the Dot/Icm assembly is much larger, containing ~27 different components including a core complex reported to be composed of five proteins: DotC, DotD, DotF, DotG, and DotH. Using single particle cryo-electron microscopy (cryo-EM), we report reconstructions of the core complex of the Dot/Icm T4SS that includes a symmetry mismatch between distinct structural features of the outer membrane cap (OMC) and periplasmic ring (PR). We present models of known core complex proteins, DotC, DotD, and DotH, and two structurally similar proteins within the core complex, DotK and Lpg0657. This analysis reveals the stoichiometry and contact interfaces between the key proteins of the Dot/Icm T4SS core complex and provides a framework for understanding a complex molecular machine.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Legionella pneumophila/chemistry , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/ultrastructure , Cryoelectron Microscopy , Protein Conformation
5.
J Bacteriol ; 201(17)2019 09 01.
Article in English | MEDLINE | ID: mdl-31209078

ABSTRACT

During its life cycle, the environmental pathogen Legionella pneumophila alternates between a replicative and transmissive cell type when cultured in broth, macrophages, or amoebae. Within a protozoan host, L. pneumophila further differentiates into the hardy cell type known as the mature infectious form (MIF). The second messenger cyclic di-GMP coordinates lifestyle changes in many bacterial species, but its role in the L. pneumophila life cycle is less understood. Using an in vitro broth culture model that approximates the intracellular transition from the replicative to the transmissive form, here we investigate the contribution to L. pneumophila differentiation of a two-component system (TCS) that regulates cyclic di-GMP metabolism. The TCS is encoded by lpg0278-lpg0277 and is cotranscribed with lpg0279, which encodes a protein upregulated in MIF cells. The promoter for this operon is RpoS dependent and induced in nutrient-limiting conditions that do not support replication, as demonstrated using a gfp reporter and quantitative PCR (qPCR). The response regulator of the TCS (Lpg0277) is a bifunctional enzyme that both synthesizes and degrades cyclic di-GMP. Using a panel of site-directed point mutants, we show that cyclic di-GMP synthesis mediated by a conserved GGDEF domain promotes growth arrest of replicative L. pneumophila, accumulation of pigment and poly-3-hydroxybutyrate storage granules, and viability in nutrient-limiting conditions. Genetic epistasis tests predict that the MIF protein Lpg0279 acts as a negative regulator of the TCS. Thus, L. pneumophila is equipped with a regulatory network in which cyclic di-GMP stimulates the switch from a replicative to a resilient state equipped to survive in low-nutrient environments.IMPORTANCE Although an intracellular pathogen, L. pneumophila has developed mechanisms to ensure long-term survival in low-nutrient aqueous conditions. Eradication of L. pneumophila from contaminated water supplies has proven challenging, as outbreaks have been traced to previously remediated systems. Understanding the genetic determinants that support L. pneumophila persistence in low-nutrient environments can inform design and assessment of remediation strategies. Here we characterize a genetic locus that encodes a two-component signaling system (lpg0278-lpg0277) and a putative regulator protein (lpg0279) that modulates the production of the messenger molecule cyclic di-GMP. We show that this locus promotes both L. pneumophila cell differentiation and survival in nutrient-limiting conditions, thus advancing the understanding of the mechanisms that contribute to L. pneumophila environmental resilience.


Subject(s)
Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Gene Expression Regulation, Bacterial , Legionella pneumophila/physiology , Microbial Viability , Amino Acids/metabolism , Culture Media , Cyclic GMP/genetics , Cyclic GMP/metabolism , Hydroxybutyrates/metabolism , Legionella pneumophila/genetics , Polyesters/metabolism , Signal Transduction
7.
mBio ; 10(3)2019 05 14.
Article in English | MEDLINE | ID: mdl-31088922

ABSTRACT

Legionella pneumophila is an important opportunistic pathogen for which environmental reservoirs are crucial for the infection of humans. In the environment, free-living amoebae represent key hosts providing nutrients and shelter for highly efficient intracellular proliferation of L. pneumophila, which eventually leads to lysis of the protist. However, the significance of other bacterial players for L. pneumophila ecology is poorly understood. In this study, we used a ubiquitous amoeba and bacterial endosymbiont to investigate the impact of this common association on L. pneumophila infection. We demonstrate that L. pneumophila proliferation was severely suppressed in Acanthamoeba castellanii harboring the chlamydial symbiont Protochlamydia amoebophila The amoebae survived the infection and were able to resume growth. Different environmental amoeba isolates containing the symbiont were equally well protected as different L. pneumophila isolates were diminished, suggesting ecological relevance of this symbiont-mediated defense. Furthermore, protection was not mediated by impaired L. pneumophila uptake. Instead, we observed reduced virulence of L. pneumophila released from symbiont-containing amoebae. Pronounced gene expression changes in the presence of the symbiont indicate that interference with the transition to the transmissive phase impedes the L. pneumophila infection. Finally, our data show that the defensive response of amoebae harboring P. amoebophila leaves the amoebae with superior fitness reminiscent of immunological memory. Given that mutualistic associations between bacteria and amoebae are widely distributed, P. amoebophila and potentially other amoeba endosymbionts could be key in shaping environmental survival, abundance, and virulence of this important pathogen, thereby affecting the frequency of human infection.IMPORTANCE Bacterial pathogens are generally investigated in the context of disease. To prevent outbreaks, it is essential to understand their lifestyle and interactions with other microbes in their natural environment. Legionella pneumophila is an important human respiratory pathogen that survives and multiplies in biofilms or intracellularly within protists, such as amoebae. Importantly, transmission to humans occurs from these environmental sources. Legionella infection generally leads to rapid host cell lysis. It was therefore surprising to observe that amoebae, including fresh environmental isolates, were well protected during Legionella infection when the bacterial symbiont Protochlamydia amoebophila was also present. Legionella was not prevented from invading amoebae but was impeded in its ability to develop fully virulent progeny and were ultimately cleared in the presence of the symbiont. This study highlights how ecology and virulence of an important human pathogen is affected by a defensive amoeba symbiont, with possibly major consequences for public health.


Subject(s)
Acanthamoeba castellanii/microbiology , Chlamydiales/physiology , Legionella pneumophila/pathogenicity , Symbiosis , Acanthamoeba castellanii/physiology , Gene Expression , Humans , Virulence
9.
Proc Natl Acad Sci U S A ; 115(8): E1730-E1739, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29432149

ABSTRACT

The 2014-2015 Legionnaires' disease (LD) outbreak in Genesee County, MI, and the outbreak resolution in 2016 coincided with changes in the source of drinking water to Flint's municipal water system. Following the switch in water supply from Detroit to Flint River water, the odds of a Flint resident presenting with LD increased 6.3-fold (95% CI: 2.5, 14.0). This risk subsided following boil water advisories, likely due to residents avoiding water, and returned to historically normal levels with the switch back in water supply. During the crisis, as the concentration of free chlorine in water delivered to Flint residents decreased, their risk of acquiring LD increased. When the average weekly chlorine level in a census tract was <0.5 mg/L or <0.2 mg/L, the odds of an LD case presenting from a Flint neighborhood increased by a factor of 2.9 (95% CI: 1.4, 6.3) or 3.9 (95% CI: 1.8, 8.7), respectively. During the switch, the risk of a Flint neighborhood having a case of LD increased by 80% per 1 mg/L decrease in free chlorine, as calculated from the extensive variation in chlorine observed. In communities adjacent to Flint, the probability of LD occurring increased with the flow of commuters into Flint. Together, the results support the hypothesis that a system-wide proliferation of legionellae was responsible for the LD outbreak in Genesee County, MI.


Subject(s)
Disease Outbreaks , Drinking Water/microbiology , Legionella pneumophila/isolation & purification , Legionnaires' Disease/epidemiology , Water Microbiology , Water Supply , Chlorine , Drinking Water/chemistry , Humans , Michigan/epidemiology , Risk Factors
10.
mBio ; 9(1)2018 02 06.
Article in English | MEDLINE | ID: mdl-29437918

ABSTRACT

Coinciding with major changes to its municipal water system, Flint, MI, endured Legionnaires' disease outbreaks in 2014 and 2015. By sampling premise plumbing in Flint in the fall of 2016, we found that 12% of homes harbored legionellae, a frequency similar to that in residences in neighboring areas. To evaluate the genetic diversity of Legionella pneumophila in Southeast Michigan, we determined the sequence type (ST) and serogroup (SG) of the 18 residential isolates from Flint and Detroit, MI, and the 33 clinical isolates submitted by hospitals in three area counties in 2013 to 2016. Common to one environmental and four clinical samples were strains of L. pneumophila SG1 and ST1, the most prevalent ST worldwide. Among the Flint premise plumbing isolates, 14 of 16 strains were of ST367 and ST461, two closely related SG6 strain types isolated previously from patients and corresponding environmental samples. Each of the representative SG1 clinical strains and SG6 environmental isolates from Southeast Michigan infected and survived within macrophage cultures at least as well as a virulent laboratory strain, as judged by microscopy and by enumerating CFU. Likewise, 72 h after infection, the yield of viable-cell counts increased >100-fold for each of the representative SG1 clinical isolates, Flint premise plumbing SG6 ST367 and -461 isolates, and two Detroit residential isolates. We verified by immunostaining that SG1-specific antibody does not cross-react with the SG6 L. pneumophila environmental strains. Because the widely used urinary antigen diagnostic test does not readily detect non-SG1 L. pneumophila, Legionnaires' disease caused by SG6 L. pneumophila is likely underreported worldwide.IMPORTANCEL. pneumophila is the leading cause of disease outbreaks associated with drinking water in the United States. Compared to what is known of the established risks of colonization within hospitals and hotels, relatively little is known about residential exposure to L. pneumophila One year after two outbreaks of Legionnaires' disease in Genesee County, MI, that coincided with damage to the Flint municipal water system, our multidisciplinary team launched an environmental surveillance and laboratory research campaign aimed at informing risk management strategies to provide safe public water supplies. The most prevalent L. pneumophila strains isolated from residential plumbing were closely related strains of SG6. In laboratory tests of virulence, the SG6 environmental isolates resembled SG1 clinical strains, yet they are not readily detected by the common diagnostic urinary antigen test, which is specific for SG1. Therefore, our study complements the existing epidemiological literature indicating that Legionnaires' disease due to non-SG1 strains is underreported around the globe.


Subject(s)
Drinking Water/microbiology , Genetic Variation , Legionella pneumophila/classification , Legionella pneumophila/isolation & purification , Legionellosis/microbiology , Sanitary Engineering , Serogroup , Humans , Legionella pneumophila/genetics , Macrophages/microbiology , Michigan , Microbial Viability , Multilocus Sequence Typing , Prevalence
11.
Mol Biol Cell ; 29(5): 657-668, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29282279

ABSTRACT

As professional phagocytes, macrophages are susceptible to endolysosomal membrane damage inflicted by the pathogens and noxious particles they ingest. Whether macrophages have mechanisms for limiting such damage is not well understood. Previously, we reported a phenomenon, termed "inducible renitence," in which lipopolysaccharide (LPS) activation of macrophages protected their endolysosomes against damage initiated by the phagocytosis of silica beads. To gain mechanistic insight into the process, we analyzed the kinetics of renitence and morphological features of LPS-activated versus resting macrophages following silica bead-mediated injury. We discovered novel vacuolar structures that form in LPS-activated but not resting macrophages following silica bead phagocytosis. Because of their correlation with renitence and damage-resistant nature, we termed these structures "renitence vacuoles" (RVs). RVs formed coincident with silica bead uptake in a process associated with membrane ruffling and macropinocytosis. However, unlike normal macropinosomes (MPs), which shrink within 20 min of formation, RVs persisted around bead-containing phagosomes. RVs fused with lysosomes, whereas associated phagosomes typically did not. These findings are consistent with a model in which RVs, as persistent MPs, prevent fusion between damaged phagosomes and intact lysosomes and thereby preserve endolysosomal integrity.


Subject(s)
Endosomes/metabolism , Intracellular Membranes/drug effects , Macrophages/cytology , Phagosomes/physiology , Vacuoles/physiology , Animals , Lipopolysaccharides/pharmacology , Lysosomes/physiology , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Phagocytosis , Pinocytosis
13.
J Bacteriol ; 198(3): 553-64, 2016 02 01.
Article in English | MEDLINE | ID: mdl-26598366

ABSTRACT

UNLABELLED: Bacterial evolution is accelerated by mobile genetic elements. To spread horizontally and to benefit the recipient bacteria, genes encoded on these elements must be properly regulated. Among the legionellae are multiple integrative conjugative elements (ICEs) that each encode a paralog of the broadly conserved regulator csrA. Using bioinformatic analyses, we deduced that specific csrA paralogs are coinherited with particular lineages of the type IV secretion system that mediates horizontal spread of its ICE, suggesting a conserved regulatory interaction. As a first step to investigate the contribution of csrA regulators to this class of mobile genetic elements, we analyzed here the activity of the csrA paralog encoded on Legionella pneumophila ICE-ßox. Deletion of this gene, which we name csrT, had no observed effect under laboratory conditions. However, ectopic expression of csrT abrogated the protection to hydrogen peroxide and macrophage degradation that ICE-ßox confers to L. pneumophila. When ectopically expressed, csrT also repressed L. pneumophila flagellin production and motility, a function similar to the core genome's canonical csrA. Moreover, csrT restored the repression of motility to csrA mutants of Bacillus subtilis, a finding consistent with the predicted function of CsrT as an mRNA binding protein. Since all known ICEs of legionellae encode coinherited csrA-type IV secretion system pairs, we postulate that CsrA superfamily proteins regulate ICE activity to increase their horizontal spread, thereby expanding L. pneumophila versatility. IMPORTANCE: ICEs are mobile DNA elements whose type IV secretion machineries mediate spread among bacterial populations. All surveyed ICEs within the Legionella genus also carry paralogs of the essential life cycle regulator csrA. It is striking that the csrA loci could be classified into distinct families based on either their sequence or the subtype of the adjacent type IV secretion system locus. To investigate whether ICE-encoded csrA paralogs are bona fide regulators, we analyzed ICE-ßox as a model system. When expressed ectopically, its csrA paralog inhibited multiple ICE-ßox phenotypes, as well as the motility of not only Legionella but also Bacillus subtilis. Accordingly, we predict that CsrA regulators equip legionellae ICEs to promote their spread via dedicated type IV secretion systems.


Subject(s)
Bacterial Proteins/metabolism , Conjugation, Genetic , Gene Expression Regulation, Bacterial/physiology , Legionella pneumophila/metabolism , Animals , Bacterial Proteins/genetics , Cell Line , Genes, Regulator , Legionella pneumophila/genetics , Lysosomes , Macrophages , Mice , Phylogeny , Protein Binding , Protein Transport , RNA, Bacterial/genetics , RNA, Bacterial/metabolism
14.
mBio ; 6(3): e00595, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26060275

ABSTRACT

UNLABELLED: Critical to microbial versatility is the capacity to express the cohort of genes that increase fitness in different environments. Legionella pneumophila occupies extensive ecological space that includes diverse protists, pond water, engineered water systems, and mammalian lung macrophages. One mechanism that equips this opportunistic pathogen to adapt to fluctuating conditions is a switch between replicative and transmissive cell types that is controlled by the broadly conserved regulatory protein CsrA. A striking feature of the legionellae surveyed is that each of 14 strains encodes 4 to 7 csrA-like genes, candidate regulators of distinct fitness traits. Here we focus on the one csrA paralog (lpg1593) that, like the canonical csrA, is conserved in all 14 strains surveyed. Phenotypic analysis revealed that long-term survival in tap water is promoted by the lpg1593 locus, which we name csrR (for "CsrA-similar protein for resilience"). As predicted by its GGA motif, csrR mRNA was bound directly by the canonical CsrA protein, as judged by electromobility shift and RNA-footprinting assays. Furthermore, CsrA repressed translation of csrR mRNA in vivo, as determined by analysis of csrR-gfp reporters, csrR mRNA stability in the presence and absence of csrA expression, and mutation of the CsrA binding site identified on the csrR mRNA. Thus, CsrA not only governs the transition from replication to transmission but also represses translation of its paralog csrR when nutrients are available. We propose that, during prolonged starvation, relief of CsrA repression permits CsrR protein to coordinate L. pneumophila's switch to a cell type that is resilient in water supplies. IMPORTANCE: Persistence of L. pneumophila in water systems is a public health risk, and yet there is little understanding of the genetic determinants that equip this opportunistic pathogen to adapt to and survive in natural or engineered water systems. A potent regulator of this pathogen's intracellular life cycle is CsrA, a protein widely distributed among bacterial species that is understood quite well. Our finding that every sequenced L. pneumophila strain carries several csrA paralogs-including two common to all isolates--indicates that the legionellae exploit CsrA regulatory switches for multiple purposes. Our discovery that one paralog, CsrR, is a target of CsrA that enhances survival in water is an important step toward understanding colonization of the engineered environment by pathogenic L. pneumophila.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Legionella pneumophila/physiology , Microbial Viability , Repressor Proteins/metabolism , Water Microbiology , Artificial Gene Fusion , Electrophoretic Mobility Shift Assay , Gene Expression Profiling , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Protein Binding , RNA, Messenger/metabolism , Stress, Physiological
15.
mBio ; 5(3): e01091-14, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24781744

ABSTRACT

ABSTRACT Integrative conjugative elements (ICEs) are mobile blocks of DNA that can contribute to bacterial evolution by self-directed transmission of advantageous traits. Here, we analyze the activity of a putative 65-kb ICE harbored by Legionella pneumophila using molecular genetics, conjugation assays, a phenotype microarray screen, and macrophage infections. The element transferred to a naive L. pneumophila strain, integrated site-specifically, and conferred increased resistance to oxacillin, penicillin, hydrogen peroxide, and bleach. Furthermore, the element increased survival of L. pneumophila within restrictive mouse macrophages. In particular, this ICE protects L. pneumophila from phagocyte oxidase activity, since mutation of the macrophage NADPH oxidase eliminated the fitness difference between strains that carried and those that lacked the mobile element. Renamed ICE-ßox (for ß-lactam antibiotics and oxidative stress), this transposable element is predicted to contribute to the emergence of L. pneumophila strains that are more fit in natural and engineered water systems and in macrophages. IMPORTANCE Bacteria evolve rapidly by acquiring new traits via horizontal gene transfer. Integrative conjugative elements (ICEs) are mobile blocks of DNA that encode the machinery necessary to spread among bacterial populations. ICEs transfer antibiotic resistance and other bacterial survival factors as cargo genes carried within the element. Here, we show that Legionella pneumophila, the causative agent of Legionnaires' disease, carries ICE-ßox, which enhances the resistance of this opportunistic pathogen to bleach and ß-lactam antibiotics. Moreover, L. pneumophila strains encoding ICE-ßox are more resistant to macrophages that carry phagocyte oxidase. Accordingly, ICE-ßox is predicted to increase the fitness of L. pneumophila in natural and engineered waters and in humans. To our knowledge, this is the first description of an ICE that confers oxidative stress resistance to a nosocomial pathogen.


Subject(s)
DNA Transposable Elements , Legionella pneumophila/physiology , Macrophages/microbiology , Oxidative Stress/genetics , Animals , Female , Gene Order , Genes, Bacterial , Genetic Fitness , Genetic Loci , Macrophages/metabolism , Mice , Mutagenesis, Insertional , NADPH Oxidases/metabolism , Oxidants/pharmacology , beta-Lactam Resistance/genetics
16.
Article in English | MEDLINE | ID: mdl-24575391

ABSTRACT

The Gram-negative bacterium Legionella pneumophila is ubiquitous in freshwater environments as a free-swimming organism, resident of biofilms, or parasite of protozoa. If the bacterium is aerosolized and inhaled by a susceptible human host, it can infect alveolar macrophages and cause a severe pneumonia known as Legionnaires' disease. A sophisticated cell differentiation program equips L. pneumophila to persist in both extracellular and intracellular niches. During its life cycle, L. pneumophila alternates between at least two distinct forms: a transmissive form equipped to infect host cells and evade lysosomal degradation, and a replicative form that multiplies within a phagosomal compartment that it has retooled to its advantage. The efficient changeover between transmissive and replicative states is fundamental to L. pneumophila's fitness as an intracellular pathogen. The transmission and replication programs of L. pneumophila are governed by a number of metabolic cues that signal whether conditions are favorable for replication or instead trigger escape from a spent host. Several lines of experimental evidence gathered over the past decade establish strong links between metabolism, cellular differentiation, and virulence of L. pneumophila. Herein, we focus on current knowledge of the metabolic components employed by intracellular L. pneumophila for cell differentiation, nutrient salvaging and utilization of host factors. Specifically, we highlight the metabolic cues that are coupled to bacterial differentiation, nutrient acquisition systems, and the strategies utilized by L. pneumophila to exploit host metabolites for intracellular replication.


Subject(s)
Food , Legionella pneumophila/physiology , Phagosomes/metabolism , Phagosomes/microbiology , Environmental Microbiology , Humans , Legionella pneumophila/growth & development , Legionnaires' Disease/microbiology
17.
Infect Immun ; 82(2): 720-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24478086

ABSTRACT

The phagosomal transporter (Pht) family of the major facilitator superfamily (MFS) is encoded by phylogenetically related intracellular gammaproteobacteria, including the opportunistic pathogen Legionella pneumophila. The location of the pht genes between the putative thymidine kinase (tdk) and phosphopentomutase (deoB) genes suggested that the phtC and phtD loci contribute to thymidine salvage in L. pneumophila. Indeed, a phtC(+) allele in trans restored pyrimidine uptake to an Escherichia coli mutant that lacked all known nucleoside transporters, whereas a phtD(+) allele did not. The results of phenotypic analyses of L. pneumophila strains lacking phtC or phtD strongly indicate that L. pneumophila requires PhtC and PhtD function under conditions where sustained dTMP synthesis is compromised. First, in broth cultures that mimicked thymidine limitation or starvation, L. pneumophila exhibited a marked requirement for PhtC function. Conversely, mutation of phtD conferred a survival advantage. Second, in medium that lacked thymidine, multicopy phtC(+) or phtD(+) alleles enhanced the survival of L. pneumophila thymidylate synthase (thyA)-deficient strains, which cannot synthesize dTMP endogenously. Third, under conditions in which transport of the pyrimidine nucleoside analog 5-fluorodeoxyuridine (FUdR) would inhibit growth, PhtC and PhtD conferred a growth advantage to L. pneumophila thyA(+) strains. Finally, when cultured in macrophages, L. pneumophila required the phtC-phtD locus to replicate. Accordingly, we propose that PhtC and PhtD contribute to protect L. pneumophila from dTMP starvation during its intracellular life cycle.


Subject(s)
Legionella pneumophila/growth & development , Legionella pneumophila/metabolism , Macrophages/microbiology , Membrane Transport Proteins/metabolism , Thymidine/metabolism , Animals , Cells, Cultured , Culture Media/chemistry , Female , Gene Deletion , Legionella pneumophila/genetics , Membrane Transport Proteins/genetics , Mice , Microbial Viability
18.
mBio ; 4(1): e00620-12, 2013 Feb 12.
Article in English | MEDLINE | ID: mdl-23404401

ABSTRACT

UNLABELLED: When microbes contaminate the macrophage cytoplasm, leukocytes undergo a proinflammatory death that is initiated by nucleotide-binding-domain-, leucine-rich-repeat-containing proteins (NLR proteins) that bind and activate caspase-1. We report that these inflammasome components also regulate autophagy, a vesicular pathway to eliminate cytosolic debris. In response to infection with flagellate Legionella pneumophila, C57BL/6J mouse macrophages equipped with caspase-1 and the NLR proteins NAIP5 and NLRC4 stimulated autophagosome turnover. A second trigger of inflammasome assembly, K(+) efflux, also rapidly activated autophagy in macrophages that produced caspase-1. Autophagy protects infected macrophages from pyroptosis, since caspase-1-dependent cell death occurred more frequently when autophagy was dampened pharmacologically by either 3-methyladenine or an inhibitor of the Atg4 protease. Accordingly, in addition to coordinating pyroptosis, both (pro-) caspase-1 protein and NLR components of inflammasomes equip macrophages to recruit autophagy, a disposal pathway that raises the threshold of contaminants necessary to trigger proinflammatory leukocyte death. IMPORTANCE: An exciting development in the innate-immunity field is the recognition that macrophages enlist autophagy to protect their cytoplasm from infection. Nutrient deprivation has long been known to induce autophagy; how infection triggers this disposal pathway is an active area of research. Autophagy is encountered by many of the intracellular pathogens that are known to trigger pyroptosis, an inflammatory cell death initiated when nucleotide-binding-domain-, leucine-rich-repeat-containing proteins (NLR proteins) activate caspase-1 within inflammasome complexes. Therefore, we tested the hypothesis that NLR proteins and caspase-1 also coordinate autophagy as a barrier to cytosolic infection. By exploiting classical bacterial and mouse genetics and kinetic assays of autophagy, we demonstrate for the first time that, when confronted with cytosolic contamination, primary mouse macrophages rely not only on the NLR proteins NAIP5 and NLRC4 but also on (pro-)caspase-1 protein to mount a rapid autophagic response that wards off proinflammatory cell death.


Subject(s)
Autophagy , Inflammasomes/metabolism , Legionella pneumophila/immunology , Macrophages/immunology , Animals , Apoptosis Regulatory Proteins/metabolism , Calcium-Binding Proteins/metabolism , Caspase 1/metabolism , Female , Mice , Mice, Inbred C57BL , Neuronal Apoptosis-Inhibitory Protein/metabolism
19.
Infect Immun ; 81(3): 945-55, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23319553

ABSTRACT

In response to environmental fluctuations or stresses, bacteria can activate transcriptional and phenotypic programs to coordinate an adaptive response. The intracellular pathogen Legionella pneumophila converts from a noninfectious replicative form to an infectious transmissive form when the bacterium encounters alterations in either amino acid concentrations or fatty acid biosynthesis. Here, we report that L. pneumophila differentiation is also triggered by nicotinic acid, a precursor of the central metabolite NAD(+). In particular, when replicative L. pneumophila are treated with 5 mM nicotinic acid, the bacteria induce numerous transmissive-phase phenotypes, including motility, cytotoxicity toward macrophages, sodium sensitivity, and lysosome avoidance. Transcriptional profile analysis determined that nicotinic acid induces the expression of a panel of genes characteristic of transmissive-phase L. pneumophila. Moreover, an additional 213 genes specific to nicotinic acid treatment were altered. Although nearly 25% of these genes lack an assigned function, the gene most highly induced by nicotinic acid treatment encodes a putative major facilitator superfamily transporter, Lpg0273. Indeed, lpg0273 protects L. pneumophila from toxic concentrations of nicotinic acid as judged by analyzing the growth of the corresponding mutant. The broad utility of the nicotinic acid pathway to couple central metabolism and cell fate is underscored by this small metabolite's modulation of gene expression by diverse microbes, including Candida glabrata, Bordetella pertussis, Escherichia coli, and L. pneumophila.


Subject(s)
Gene Expression Regulation, Bacterial/drug effects , Legionella pneumophila/drug effects , Legionella pneumophila/metabolism , Niacin/pharmacology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cell Proliferation , Female , Legionella pneumophila/pathogenicity , Lysosomes , Macrophages , Mice , Models, Molecular , Protein Conformation , Time Factors , Transcriptome , Virulence
20.
Methods Mol Biol ; 954: 197-212, 2013.
Article in English | MEDLINE | ID: mdl-23150396

ABSTRACT

The ability to construct recombinant alleles efficiently in strains of interest, particularly unmarked deletions that reduce the potential for polar effects, is essential to studies of both pathogenesis and basic bacterial physiology. Here we describe a three-phase approach for generating unmarked deletions in Legionella pneumophila by constructing a mutant allele in E. coli using λ-Red recombination, so-called recombineering; transferring the allele onto the L. pneumophila chromosome by natural transformation; and then removing the selectable marker by utilizing the Flp site-specific recombinase. This strategy can decrease the amount of clone screening required while also increasing the percentage of the time the desired allele is obtained on the first attempt. The approach is particularly suited for constructing multiple unmarked deletions in a single strain in fewer steps than traditional methods.


Subject(s)
Gene Deletion , Legionella pneumophila/genetics , Alleles , Escherichia coli/genetics , Genetic Engineering , Homologous Recombination , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL