Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(7): e17824, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37455997

ABSTRACT

Traditional Agrophotovoltaic (APV) installation (i.e., basic row layout with minimum or no usage of the space underneath the solar PV panels) is responsible for a vast amount of agricultural land waste as no regular crops are grown under the shade of APV. Bangladesh is no exception to this trend. A primary in-person survey of about 50 solar irrigation pumps (SIPs), i.e., APVs, in Bangladesh, shows that on average, 13.77 decimal or 7,200 sq.ft. of land is used for each APV system installation. If 10,000 SIPs are installed by 2027 in Bangladesh, as targeted by the government through Infrastructure Development Company Limited (IDCOL) by employing the same procedure, the land wastage would be 1,652 acres. Notably, this is a critical issue for a country like Bangladesh with a scarcity of agricultural lands. According to World Bank data, agricultural land in Bangladesh was about 80% in 1989 and reduced to 76% in 2020 due to population growth and urbanization. Therefore, to reduce agricultural land waste a non-traditional APV installation procedure, along with its shading impact on the BRRI-33 rice variety (a major crop in Bangladesh), has been investigated in this study. The results show that discontinuous sunlight has an insignificant impact on BRRI-33 rice production, and APV might be installed in the cultivating area for irrigation purposes. This non-traditional APV installation has a statistically insignificant impact on rice yield. For instance, the 100 grains' yield variation was between 1.45 and 4.82%, which is insignificant. Additionally, the APV shade does not negatively impact soil pH level, and shadow helps keep the soil temperature low and ensures less irrigation. Hence, the proposed non-traditional APV installation could achieve sustainable agriculture and energy development through efficient land use at least in the case of the BRRI-33 rice variety.

2.
3 Biotech ; 13(5): 152, 2023 May.
Article in English | MEDLINE | ID: mdl-37131966

ABSTRACT

Blumea lacera (Burm. f.) DC. is an aromatic annual herb that has traditionally been used to treat or protect against diabetes. Although it has infallible uses, its supply is limited due to its short lifespan. In this study, we aim to investigate the anti-diabetic potential of its micropropagated plants in type 2 diabetic mammalian (mouse) model and further expand the molecular mechanistic understanding of its activity. The water extract of the micropropagated plants was tested in mice with streptozotocin-induced diabetes. The extract effectively suppressed glucose levels prevented weight loss, and improved dyslipidemia in mice. Additionally, it improved liver injury as well as all investigated toxicity indicators, including serum glutamate-pyruvate transaminase, serum glutamic oxaloacetic transaminase, and serum anti-inflammatory marker C-reactive protein. The intramolecular interaction study revealed that the innate polyphenolic constituents of this plant more profoundly inhibited α-amylase, α-glucosidase, and lipase compared to the standard. The prolific bioactive compounds of the micropropagated plant could be attributed to these superior anti-diabetic effects, presumably via an elaborate inhibition of carbohydrate and lipid hydrolyzing enzymes. Thus, the obtained results provide solid experimental proof of the year-round utility of micropropagated plants as a standard source plant material of Blumea lacera (Burm. f.) DC. for drug research and therapeutic production.

3.
Chem Biodivers ; 19(9): e202200282, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35983910

ABSTRACT

Blumea lacera (Burm. f.) DC. is attracting scientific interest due to the diverse biological activities of its various parts and its use in folk medicine. The present study was undertaken to investigate the tissue-specific differential expression pattern of its total bioactive compounds. The study was further extended to whole plant phenolics profiling, in vitro enzyme inhibition activities, followed by in silico enzyme inhibition analysis to assess its potential as herbal medicine. The amount of total phenolics in different tissues was followed in decreasing order as old leaf, flower bud, root, young leaf, flower, old stem, and young stem, while that for the flavonoids was old leaf, root, young leaf, flower bud, flower, young stem, and old stem. This study identified rosmarinic acid, quercetin, and kaempferol in this plant for the first time. The solvent extracts demonstrated strong inhibition of lipase and tyrosinase activity, along with varying degrees of inhibition of acetylcholinesterase and butyrylcholinesterase activity. Among the detected compounds, ten displayed strong in silico binding affinities with the tested enzymes. The findings provide a new insight into further investigation of the medicinal potential of this species against obesity, neurological disorders, and aberrant skin color.


Subject(s)
Asteraceae , Polyphenols , Acetylcholinesterase/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Asteraceae/metabolism , Butyrylcholinesterase , Flavonoids/chemistry , Kaempferols/pharmacology , Lipase , Monophenol Monooxygenase , Obesity/drug therapy , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Quercetin/pharmacology , Solvents
4.
Biomed Pharmacother ; 141: 111859, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34246953

ABSTRACT

Blumea laciniata (Roxb.) DC. is a folk medicinal annual herb of the Asteraceae family that grows in South and Southeast Asia. In order to evaluate its phytopharmaceutical potential against diabetic, obesity, and Alzheimer's, a comprehensive phytochemical profile, in vitro and in silico enzyme inhibitory activity against α-amylase, α-glucosidase, lipase, cholinesterases, and tyrosinase along with in vitro antioxidant activity were performed. Additionally, in vivo antidiabetic activity and acute toxicity were also evaluated. The total phenolic content in various organs follows the following order: old leaf > flower bud > young leaf > flower > young stem > old stem > root, while total flavonoids followed the order: flower bud > old leaf > young leaf > flower > young stem > old stem > root. The identified phenolic compounds are 3,4-dihydroxybenzoic acid, caffeic acid, vanillic acid, p-coumaric acid, syringic acid, rosmarinic acid, trans-cinnamic acid, catechin, catechol, (-) epicatechin, rutin, quercetin, myricetin, and kaempferol, which are also expressed differently in various organs. Solvent extracts demonstrated strong antioxidant activity as well as varying levels of inhibition against the enzymes tested, with strong inhibitory activity against α-amylase, α-glucosidase, and lipase. Thirteen phenolic compounds displayed strong binding affinity in silico against studied enzymes, thus documented as bioactive. Furthermore, solvent extracts significantly suppressed blood glucose levels in mice with induced diabetes and extracts were not acutely toxic. The results suggest that Blumea laciniata (Roxb.) DC. could be a potential candidate for developing new phytopharmaceuticals and bioactive ingredients.


Subject(s)
Alzheimer Disease/drug therapy , Anti-Obesity Agents/pharmacology , Asteraceae/chemistry , Hypoglycemic Agents/pharmacology , Phytotherapy , Plant Extracts/pharmacology , Animals , Anti-Obesity Agents/therapeutic use , Antioxidants/pharmacology , Blood Glucose/analysis , Blood Glucose/metabolism , Computer Simulation , Diabetes Mellitus, Experimental/drug therapy , Enzyme Inhibitors/pharmacology , Flavonoids/analysis , Flavonoids/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Mice , Molecular Docking Simulation , Phenols/analysis , Plant Extracts/adverse effects , Plant Extracts/therapeutic use
5.
Heliyon ; 7(6): e07228, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34189294

ABSTRACT

BACKGROUND AND AIM: Sphagneticola calendulacea (L.) Pruski (S. calendulacea) is a well-known medicinal plant that is widely used in traditional medicine. This study was conducted to evaluate the antioxidant and antineoplastic properties of S. calendulacea leaf. EXPERIMENTAL PROCEDURE: Methanol was used as a solvent to prepare leaf extract from the dried leaf of S. calendulacea (MESL). We have evaluated the total phenolic and flavonoid contents of MESL, and using five different assays; we have also evaluated the antioxidant property of MESL. In vivo antineoplastic activity of MESL against Ehrlich ascites carcinoma (EAC) cells in experimental mice was also explored. RESULTS: The phytochemical analysis of MESL exhibited the total phenolic, and total flavonoid contents in the dry extracts were 32.86 mg/gm of gallic acid equivalent and 127.26 mg/gm of catechin equivalent, respectively. Moreover, MESL also showed promising scavenging activity in all assays (IC50 value ≥70.5 µg/mL). In the in vivo antineoplastic assay, MESL showed increased EAC cell death at the doses of 50 mg/kg and 100 mg/kg body weight. MESL administration also induced apoptosis of EAC cells, significantly inhibited EAC cell growth, and increased the life span of EAC cell-bearing mice compared to EAC cell-bearing control mice. CONCLUSIONS: All findings of this study suggest potential antioxidant and antineoplastic properties of MESL.

6.
Int J Phytoremediation ; 19(3): 246-253, 2017 Mar 04.
Article in English | MEDLINE | ID: mdl-27434775

ABSTRACT

High chromium (Cr) in rice causes reduced yield and health hazards. This work investigates how Si alleviates Cr toxicity in rice. Addition of Si under Cr stress restored the growth parameters, total protein content, and membrane stability along with reduced Cr content in shoots, confirming that Si plays critical roles in Cr detoxification in rice. However, Si supplementation under Cr stress caused no significant changes in root Cr content but decreased shoot Cr concentrations compared with Cr-stressed plants, indicating that alleviation of Cr toxicity might be associated with Cr sequestration in roots. Further, concentration of Fe and expression of Fe transporter (OsIRT1) showed no significant changes due to Si supplementation under Cr stress, implying that Fe regulation is not involved with Si-mediated mitigation of Cr toxicity in rice. Further, phytochelatin accumulation and OsPCS1 (phytochelatin synthase) transcripts strongly induced due to the dual treatment of Si and Cr compared with Cr-stressed plants, suggesting that phytochelatin might bind to Cr, which leads to vacuolar sequestration in roots. Furthermore, increased glutathione reductase activity in roots implies that active involvement of ROS scavenging partially ameliorates Cr toxicity in rice plants. The study illustrates first evidences on the effect of Si alleviating Cr toxicity in rice plants.


Subject(s)
Chromium/metabolism , Oryza/metabolism , Phytochelatins/metabolism , Plant Roots/metabolism , Silicon/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Oryza/growth & development
7.
Funct Plant Biol ; 43(11): 1070-1081, 2016 Nov.
Article in English | MEDLINE | ID: mdl-32480527

ABSTRACT

Excess iron (Fe) is phytotoxic and causes reduced growth and productivity in rice. In this study we elucidated the mechanisms conferring differential tolerance to Fe-toxicity in rice seedlings. Excess Fe caused retardation in roots of both Pokkali and BRRI 51, but it caused no significant changes on growth parameters, Fe accumulation and OsIRT1 expression in shoots of Pokkali only compared with control plants. These results suggest that the Pokkali genotype does have mechanisms in shoots to withstand Fe toxicity. Pokkali maintained membrane stability and total soluble protein in shoots due to Fe toxicity, further confirming its ability to tolerate excess Fe. Furthermore, a significant decrease of Fe-chelate reductase activity and OsFRO1 expression in shoots of Pokkali suggests that limiting Fe accumulation is possibly regulated by Fe-reductase activity. Our extensive expression analysis on the expression pattern of three chelators (OsDMAS1, OsYSL15, OsYSL2 and OsFRDL1) showed no significant changes in expression in shoots of Pokkali due to Fe toxicity, whereas these genes were significantly upregulated under Fe-toxicity in sensitive BRRI 51. These results imply that regulation of Fe chelation in shoots of Pokkali contributes to its tolerance to Fe toxicity. Finally, increased catalase (CAT), peroxidase (POD), glutathione reductase (GR) and superoxide dismutase (SOD), along with elevated ascorbic acid, glutathione, cysteine, methionine and proline in shoots of Pokkali caused by Fe toxicity suggests that strong antioxidant defence protects rice plants from oxidative injury under Fe toxicity. Taking these results together, we propose that genetic variation in Fe-toxicity tolerance in rice is shoot based, and is mainly associated with the regulation of translocation and chelation of Fe together with elevated antioxidant metabolites in shoots.

8.
J Environ Manage ; 134: 175-85, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24509286

ABSTRACT

Arsenic (As) contamination has recently become a worldwide problem, as it is found to be widespread not only in drinking water but also in various foodstuffs. Because of the high toxicity, As contamination poses a serious risk to human health and ecological system. To cope with this problem, a great deal of effort have been made to account for the mechanisms of As mineral formation and accumulation by some plants and aquatic organisms exposed to the high level of As. Hence, bio-remediation is now considered an effective and potent approach to breakdown As contamination. In this review, we provide up-to-date knowledge on how biological tools (such as plants for phytoremediation and to some extent microorganisms) can be used to help resolve the effects of As problems on the Earth's environment.


Subject(s)
Arsenic/metabolism , Environmental Pollutants/metabolism , Arsenic/toxicity , Biodegradation, Environmental , Environmental Pollutants/toxicity , Plants/drug effects , Plants/metabolism
9.
Plant Sci ; 180(5): 661-71, 2011 May.
Article in English | MEDLINE | ID: mdl-21421416

ABSTRACT

SmD3 is a core protein of small nuclear ribonucleoprotein (snRNP) essential for splicing of primary transcripts. To elucidate function of SmD3 protein in plants, phenotypes and gene expression of SmD3 knock-out and overexpressing mutants in Arabidopsis have been analyzed. smd3-a knock-out mutant or SmD3-a and SmD3-b overexpressors did not show phenotypic alteration. Knock-out of SmD3-b resulted in the pleotropic phenotypes of delayed flowering time and completion of life cycle, reduced root growth, partially defective leaf venation, abnormal numbers of trichome branches, and changed numbers of floral organs. Microarray data revealed that the smd3-b mutant had altered expression of genes related to the above phenotypes, indirectly suggesting that changed splicing of these genes may cause the observed phenotypes. Splicing of selected genes was either totally blocked or reduced in the smd3-b mutant, indicating the important role of SmD3-b in the process. A double knock-out mutant of smd3-a and smd3-b could not be generated, indicating possible redundant function of these two genes. All data indicate that SmD3-b may be major component of the spliceosomal snRNP in Arabidopsis, but the function of SmD3-a may be redundant.


Subject(s)
Alternative Splicing , Arabidopsis/genetics , Gene Expression Regulation, Plant , Genetic Pleiotropy , Plant Leaves/genetics , Plant Roots/genetics , Ribonucleoproteins, Small Nuclear/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Mutation , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism
10.
J Zhejiang Univ Sci ; 5(4): 406-11, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14994428

ABSTRACT

The genetic basis of heterosis was studied through mid-parent, standard variety and better parent for 11 quantitative traits in 17 parental lines and their 10 selected hybrids in rice (Oryza sativa L.). The characters were plant height, days to flag leaf initiation, days to first panicle initiation, days to 100% flowering, panicle length, flag leaf length, days to maturity, number of fertile spikelet/panicle, number of effective tillers/hill, grain yield/10-hill, and 1000-grain weight. In general the hybrids performed significantly better than the respective parents. Significant heterosis was observed for most of the studied characters. Among the 10 hybrids, four hybrids viz., 17Ax45R, 25Ax37R, 27Ax39R, 31Ax47R, and 35Ax47R showed highest heterosis in 10-hill grain yield/10-hill. Inbreeding depression of F2 progeny was also studied for 11 characters of 10 hybrids. Both positive and negative inbreeding depression were found in many crosses for the studied characters, but none was found significant. Selection of good parents was found to be the most important for developing high yielding hybrid rice varieties.


Subject(s)
Oryza/genetics , Hybrid Vigor , Hybridization, Genetic , Inbreeding , Oryza/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...