Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 29(10): 1952-1968, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36862086

ABSTRACT

PURPOSE: Phosphatase and tensin homolog (PTEN) loss of function occurs in approximately 50% of patients with metastatic castrate-resistant prostate cancer (mCRPC), and is associated with poor prognosis and responsiveness to standard-of-care therapies and immune checkpoint inhibitors. While PTEN loss of function hyperactivates PI3K signaling, combinatorial PI3K/AKT pathway and androgen deprivation therapy (ADT) has demonstrated limited anticancer efficacy in clinical trials. Here, we aimed to elucidate mechanism(s) of resistance to ADT/PI3K-AKT axis blockade, and to develop rational combinatorial strategies to effectively treat this molecular subset of mCRPC. EXPERIMENTAL DESIGN: Prostate-specific PTEN/p53-deficient genetically engineered mice (GEM) with established 150-200 mm3 tumors, as assessed by ultrasound, were treated with either ADT (degarelix), PI3K inhibitor (copanlisib), or anti-PD-1 antibody (aPD-1), as single agents or their combinations, and tumors were monitored by MRI and harvested for immune, transcriptomic, and proteomic profiling, or ex vivo co-culture studies. Single-cell RNA sequencing on human mCRPC samples was performed using 10X Genomics platform. RESULTS: Coclinical trials in PTEN/p53-deficient GEM revealed that recruitment of PD-1-expressing tumor-associated macrophages (TAM) thwarts ADT/PI3Ki combination-induced tumor control. The addition of aPD-1 to ADT/PI3Ki combination led to TAM-dependent approximately 3-fold increase in anticancer responses. Mechanistically, decreased lactate production from PI3Ki-treated tumor cells suppressed histone lactylation within TAM, resulting in their anticancer phagocytic activation, which was augmented by ADT/aPD-1 treatment and abrogated by feedback activation of Wnt/ß-catenin pathway. Single-cell RNA-sequencing analysis in mCRPC patient biopsy samples revealed a direct correlation between high glycolytic activity and TAM phagocytosis suppression. CONCLUSIONS: Immunometabolic strategies that reverse lactate and PD-1-mediated TAM immunosuppression, in combination with ADT, warrant further investigation in patients with PTEN-deficient mCRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Animals , Mice , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Tumor Suppressor Protein p53/genetics , Proto-Oncogene Proteins c-akt , Androgen Antagonists/therapeutic use , Lactic Acid , Phosphatidylinositol 3-Kinases , Proteomics , Wnt Signaling Pathway , Immunosuppression Therapy , Macrophages/pathology , PTEN Phosphohydrolase/genetics
2.
Breast Cancer Res ; 24(1): 63, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153537

ABSTRACT

BACKGROUND: Breast cancer cell lines (BCCLs) and patient-derived xenografts (PDXs) are the most frequently used models in breast cancer research. Despite their widespread usage, genome sequencing of these models is incomplete, with previous studies only focusing on targeted gene panels, whole exome or shallow whole genome sequencing. Deep whole genome sequencing is the most sensitive and accurate method to detect single nucleotide variants and indels, gene copy number and structural events such as gene fusions. RESULTS: Here we describe deep whole genome sequencing (WGS) of commonly used BCCL and PDX models using the Illumina X10 platform with an average ~ 60 × coverage. We identify novel genomic alterations, including point mutations and genomic rearrangements at base-pair resolution, compared to previously available sequencing data. Through integrative analysis with publicly available functional screening data, we annotate new genomic features likely to be of biological significance. CSMD1, previously identified as a tumor suppressor gene in various cancer types, including head and neck, lung and breast cancers, has been identified with deletion in 50% of our PDX models, suggesting an important role in aggressive breast cancers. CONCLUSIONS: Our WGS data provides a comprehensive genome sequencing resource of these models.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/genetics , Disease Models, Animal , Female , Genomics/methods , Heterografts , Humans , MCF-7 Cells , Nucleotides , Whole Genome Sequencing
3.
Clin Epigenetics ; 13(1): 226, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34922619

ABSTRACT

Neoadjuvant chemotherapy (NAC) is used to treat triple-negative breast cancer (TNBC) prior to resection. Biomarkers that accurately predict a patient's response to NAC are needed to individualise therapy and avoid chemotoxicity from unnecessary chemotherapy. We performed whole-genome DNA methylation profiling on diagnostic TNBC biopsy samples from the Sequential Evaluation of Tumours Undergoing Preoperative (SETUP) NAC study. We found 9 significantly differentially methylated regions (DMRs) at diagnosis which were associated with response to NAC. We show that 4 of these DMRs are associated with TNBC overall survival (P < 0.05). Our results highlight the potential of DNA methylation biomarkers for predicting NAC response in TNBC.


Subject(s)
Biomarkers, Pharmacological/analysis , Biomarkers, Tumor/analysis , Neoadjuvant Therapy/standards , Triple Negative Breast Neoplasms/drug therapy , Adult , Biomarkers, Tumor/genetics , DNA Methylation/genetics , Female , Humans , Male , Middle Aged , Neoadjuvant Therapy/methods , Neoadjuvant Therapy/statistics & numerical data , Prognosis , Proportional Hazards Models , Triple Negative Breast Neoplasms/etiology
4.
Nat Commun ; 12(1): 6012, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650042

ABSTRACT

In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis. However, tumor sequencing strategies typically result in loss of spatial information, critical to understand cell interactions and their functional relevance. To address this, we investigate spatial gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We show that expression-based clustering enables data-driven tumor annotation and assessment of intra- and interpatient heterogeneity; from which we discover shared gene signatures for immune and tumor processes. By integration with single cell data, we spatially map tumor-associated cell types to find tertiary lymphoid-like structures, and a type I interferon response overlapping with regions of T-cell and macrophage subset colocalization. We construct a predictive model to infer presence of tertiary lymphoid-like structures, applicable across tissue types and technical platforms. Taken together, we combine different data modalities to define a high resolution map of cellular interactions in tumors and provide tools generalizing across tissues and diseases.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Transcriptome , Breast Neoplasms/pathology , Cluster Analysis , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Humans
5.
Breast Cancer Res ; 23(1): 82, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344433

ABSTRACT

BACKGROUND: Particular breast cancer subtypes pose a clinical challenge due to limited targeted therapeutic options and/or poor responses to the existing targeted therapies. While cell lines provide useful pre-clinical models, patient-derived xenografts (PDX) and organoids (PDO) provide significant advantages, including maintenance of genetic and phenotypic heterogeneity, 3D architecture and for PDX, tumor-stroma interactions. In this study, we applied an integrated multi-omic approach across panels of breast cancer PDXs and PDOs in order to identify candidate therapeutic targets, with a major focus on specific FGFRs. METHODS: MS-based phosphoproteomics, RNAseq, WES and Western blotting were used to characterize aberrantly activated protein kinases and effects of specific FGFR inhibitors. PDX and PDO were treated with the selective tyrosine kinase inhibitors AZD4547 (FGFR1-3) and BLU9931 (FGFR4). FGFR4 expression in cancer tissue samples and PDOs was assessed by immunohistochemistry. METABRIC and TCGA datasets were interrogated to identify specific FGFR alterations and their association with breast cancer subtype and patient survival. RESULTS: Phosphoproteomic profiling across 18 triple-negative breast cancers (TNBC) and 1 luminal B PDX revealed considerable heterogeneity in kinase activation, but 1/3 of PDX exhibited enhanced phosphorylation of FGFR1, FGFR2 or FGFR4. One TNBC PDX with high FGFR2 activation was exquisitely sensitive to AZD4547. Integrated 'omic analysis revealed a novel FGFR2-SKI fusion that comprised the majority of FGFR2 joined to the C-terminal region of SKI containing the coiled-coil domains. High FGFR4 phosphorylation characterized a luminal B PDX model and treatment with BLU9931 significantly decreased tumor growth. Phosphoproteomic and transcriptomic analyses confirmed on-target action of the two anti-FGFR drugs and also revealed novel effects on the spliceosome, metabolism and extracellular matrix (AZD4547) and RIG-I-like and NOD-like receptor signaling (BLU9931). Interrogation of public datasets revealed FGFR2 amplification, fusion or mutation in TNBC and other breast cancer subtypes, while FGFR4 overexpression and amplification occurred in all breast cancer subtypes and were associated with poor prognosis. Characterization of a PDO panel identified a luminal A PDO with high FGFR4 expression that was sensitive to BLU9931 treatment, further highlighting FGFR4 as a potential therapeutic target. CONCLUSIONS: This work highlights how patient-derived models of human breast cancer provide powerful platforms for therapeutic target identification and analysis of drug action, and also the potential of specific FGFRs, including FGFR4, as targets for precision treatment.


Subject(s)
Breast Neoplasms/drug therapy , Models, Biological , Protein Kinase Inhibitors/therapeutic use , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , DNA-Binding Proteins/genetics , Humans , Mice , Molecular Targeted Therapy , Mutation , Organoids/drug effects , Organoids/metabolism , Phosphorylation , Precision Medicine , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
6.
Nat Med ; 27(2): 310-320, 2021 02.
Article in English | MEDLINE | ID: mdl-33462444

ABSTRACT

The role of the androgen receptor (AR) in estrogen receptor (ER)-α-positive breast cancer is controversial, constraining implementation of AR-directed therapies. Using a diverse, clinically relevant panel of cell-line and patient-derived models, we demonstrate that AR activation, not suppression, exerts potent antitumor activity in multiple disease contexts, including resistance to standard-of-care ER and CDK4/6 inhibitors. Notably, AR agonists combined with standard-of-care agents enhanced therapeutic responses. Mechanistically, agonist activation of AR altered the genomic distribution of ER and essential co-activators (p300, SRC-3), resulting in repression of ER-regulated cell cycle genes and upregulation of AR target genes, including known tumor suppressors. A gene signature of AR activity positively predicted disease survival in multiple clinical ER-positive breast cancer cohorts. These findings provide unambiguous evidence that AR has a tumor suppressor role in ER-positive breast cancer and support AR agonism as the optimal AR-directed treatment strategy, revealing a rational therapeutic opportunity.


Subject(s)
Androgens/pharmacology , Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Receptors, Androgen/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/genetics , Female , Humans , MCF-7 Cells , Nuclear Receptor Coactivator 3/genetics , Receptors, Androgen/drug effects , Signal Transduction/drug effects
7.
Breast Cancer Res ; 22(1): 87, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32787886

ABSTRACT

BACKGROUND: Resistance to endocrine therapy is a major clinical challenge in the management of oestrogen receptor (ER)-positive breast cancer. In this setting, p53 is frequently wildtype and its activity may be suppressed via upregulation of its key regulator MDM2. This underlies our rationale to evaluate MDM2 inhibition as a therapeutic strategy in treatment-resistant ER-positive breast cancer. METHODS: We used the MDM2 inhibitor NVP-CGM097 to treat in vitro and in vivo models alone and in combination with fulvestrant or palbociclib. We perform cell viability, cell cycle, apoptosis and senescence assays to evaluate anti-tumour effects in p53 wildtype and p53 mutant ER-positive cell lines (MCF-7, ZR75-1, T-47D) and MCF-7 lines resistant to endocrine therapy and to CDK4/6 inhibition. We further assess the drug effects in patient-derived xenograft (PDX) models of endocrine-sensitive and endocrine-resistant ER-positive breast cancer. RESULTS: We demonstrate that MDM2 inhibition results in cell cycle arrest and increased apoptosis in p53-wildtype in vitro and in vivo breast cancer models, leading to potent anti-tumour activity. We find that endocrine therapy or CDK4/6 inhibition synergises with MDM2 inhibition but does not further enhance apoptosis. Instead, combination treatments result in profound regulation of cell cycle-related transcriptional programmes, with synergy achieved through increased antagonism of cell cycle progression. Combination therapy pushes cell lines resistant to fulvestrant or palbociclib to become senescent and significantly reduces tumour growth in a fulvestrant-resistant patient-derived xenograft model. CONCLUSIONS: We conclude that MDM2 inhibitors in combination with ER degraders or CDK4/6 inhibitors represent a rational strategy for treating advanced, endocrine-resistant ER-positive breast cancer, operating through synergistic activation of cell cycle co-regulatory programmes.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Receptors, Estrogen/metabolism , Animals , Apoptosis , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Female , Fulvestrant/administration & dosage , Humans , Isoquinolines/administration & dosage , Mice , Mice, Inbred NOD , Mice, SCID , Piperazines/administration & dosage , Pyridines/administration & dosage , Xenograft Model Antitumor Assays
8.
Sci Rep ; 9(1): 17052, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31745186

ABSTRACT

Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour's molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Genetic Predisposition to Disease/genetics , Head and Neck Neoplasms/genetics , Pancreatic Neoplasms/genetics , Pituitary Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Circulating Tumor DNA/genetics , Computational Biology/methods , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Liquid Biopsy , Precision Medicine/methods , Sensitivity and Specificity
9.
NPJ Precis Oncol ; 3: 21, 2019.
Article in English | MEDLINE | ID: mdl-31482136

ABSTRACT

Patients diagnosed with triple negative breast cancer (TNBC) have an increased risk of rapid metastasis compared to other subtypes. Predicting long-term survival post-chemotherapy in patients with TNBC is difficult, yet enhanced infiltration of tumor infiltrating lymphocytes (TILs) has been associated with therapeutic response and reduced risk of metastatic relapse. Immune biomarkers that predict the immune state of a tumor and risk of metastatic relapse pre- or mid-neoadjuvant chemotherapy are urgently needed to allow earlier implementation of alternate therapies that may reduce TNBC patient mortality. Utilizing a neoadjuvant chemotherapy trial where TNBC patients had sequential biopsies taken, we demonstrate that measurement of T-cell subsets and effector function, specifically CD45RO expression, throughout chemotherapy predicts risk of metastatic relapse. Furthermore, we identified the tumor inherent interferon regulatory factor IRF9 as a marker of active intratumoral type I and II interferon (IFN) signaling and reduced risk of distant relapse. Functional implications of tumor intrinsic IFN signaling were demonstrated using an immunocompetent mouse model of TNBC, where enhanced type I IFN signaling increased anti-tumor immunity and metastasis-free survival post-chemotherapy. Using two independent adjuvant cohorts we were able to validate loss of IRF9 as a poor prognostic biomarker pre-chemotherapy. Thus, IRF9 expression may offer early insight into TNBC patient prognosis and tumor heat, allowing for identification of patients that are unlikely to respond to chemotherapy alone and could benefit from further immune-based therapeutic intervention.

10.
Nat Commun ; 9(1): 2311, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29899353

ABSTRACT

Understanding the dynamics of endogenous protein-protein interactions in complex networks is pivotal in deciphering disease mechanisms. To enable the in-depth analysis of protein interactions in chromatin-associated protein complexes, we have previously developed a method termed RIME (Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins). Here, we present a quantitative multiplexed method (qPLEX-RIME), which integrates RIME with isobaric labelling and tribrid mass spectrometry for the study of protein interactome dynamics in a quantitative fashion with increased sensitivity. Using the qPLEX-RIME method, we delineate the temporal changes of the Estrogen Receptor alpha (ERα) interactome in breast cancer cells treated with 4-hydroxytamoxifen. Furthermore, we identify endogenous ERα-associated proteins in human Patient-Derived Xenograft tumours and in primary human breast cancer clinical tissue. Our results demonstrate that the combination of RIME with isobaric labelling offers a powerful tool for the in-depth and quantitative characterisation of protein interactome dynamics, which is applicable to clinical samples.


Subject(s)
Chromatin/metabolism , Mass Spectrometry/methods , Protein Interaction Mapping/methods , Animals , Breast Neoplasms/metabolism , Chromatin/chemistry , Chromatin/drug effects , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/metabolism , Female , Heterografts , Humans , MCF-7 Cells , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Interaction Maps/drug effects , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology
11.
J Nucl Med ; 54(6): 913-21, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23564760

ABSTRACT

UNLABELLED: Triple-negative breast cancer (TNBC) is associated with poor survival. Chemotherapy is the only standard treatment for TNBC. The prevalence of BRCA1 inactivation in TNBC has rationalized clinical trials of poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors. Similarly, the overexpression of epidermal growth factor receptor (EGFR) rationalized anti-EGFR therapies in this disease. However, clinical trials using these 2 strategies have not reached their promise. In this study, we used EGFR as a target for radioimmunotherapy and hypothesized that EGFR-directed radioimmunotherapy can deliver a continuous lethal radiation dose to residual tumors that are radiosensitized by PARP inhibitors and chemotherapy. METHODS: We analyzed EGFR messenger RNA in published gene expression array studies and investigated EGFR protein expression by immunohistochemistry in a cohort of breast cancer patients to confirm EGFR as a target in TNBC. Preclinically, using orthotopic and metastatic xenograft models of EGFR-positive TNBC, we investigated the effect of the novel combination of (177)Lu-labeled anti-EGFR monoclonal antibody, chemotherapy, and PARP inhibitors on cell death and the survival of breast cancer stem cells. RESULTS: In this first preclinical study of anti-EGFR radioimmunotherapy in breast cancer, we found that anti-EGFR radioimmunotherapy is safe and that TNBC orthotopic tumors and established metastases were eradicated in mice treated with anti-EGFR radioimmunotherapy combined with chemotherapy and PARP inhibitors. We showed that the superior response to this triple-agent combination therapy was associated with apoptosis and eradication of putative breast cancer stem cells. CONCLUSION: Our data support further preclinical investigations toward the development of combination therapies using systemic anti-EGFR radioimmunotherapy for the treatment of recurrent and metastatic TNBC.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Enzyme Inhibitors/therapeutic use , ErbB Receptors/immunology , Poly(ADP-ribose) Polymerase Inhibitors , Radiation-Sensitizing Agents/therapeutic use , Radioimmunotherapy/methods , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic , Enzyme Inhibitors/pharmacology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Lutetium/therapeutic use , Mice , Neoplasm Metastasis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Radiation-Sensitizing Agents/pharmacology , Radioisotopes/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...