Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Cell Biochem Biophys ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453745

ABSTRACT

Cancer cells utilize glucose as their primary energy source. The aggressive nature of cancer cells is therefore enhanced in hyperglycemic conditions. This study has been adopted to investigate the therapeutic potential of melatonin against such aggressive proliferation of AGS cells-a human gastric cancer cell line, under hyperglycemic conditions. AGS cells were incubated with high glucose-containing media, and the effects of melatonin have been evaluated, therein. Cell proliferation, ROS generation, flow-cytometric analysis for cell cycle and apoptosis, wound healing, immunoblotting, zymography, reverse zymography assays, in-silico analysis, and kinase activity assays were performed to evaluate the effects of melatonin. We observed that melatonin inhibited the hyperglycemia-induced cell proliferation in a dose-dependent manner. It further altered the expression and activity of MMP-9 and TIMP-1. Moreover, melatonin inhibited AGS cell proliferation by arresting AGS cells in the G0/G1 phase after binding in the ATP binding site of CDK-2, thereby inhibiting its kinase activity. In association, a significant decrease in the expression of cyclin D1, cyclin E, CDK-4, and CDK-2 were observed. In conclusion, these findings suggest that melatonin has anti-gastric cancer potential. Melatonin could therefore be included in future drug designs for gastric cancer-hyperglycemia co-morbidity treatment.

2.
J Med Chem ; 66(13): 8917-8928, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37186543

ABSTRACT

Indomethacin, a known nonsteroidal anti-inflammatory drug (NSAID) induces gastric inflammation, causing degradation of the extracellular matrix by specific matrix metalloproteinases (MMPs). We investigated the antiulcer efficacy of 3-indolyl furanoids (3g and 3c, i.e., methoxy substitution at 4- and 5-positions of the indole ring, respectively), derived from indomethacin. Interestingly, 3g protected against indomethacin-induced gastropathy in vivo by inhibiting MMP-9. Our work established a chemical modification strategy for the development of safer NSAIDs. Moreover, in vitro and in silico studies confirmed that 3g inhibited MMP-9 activity with an IC50 value of 50 µM by binding to the catalytic cleft of MMP-9, leading to ulcer prevention. Pharmacokinetics was presented as the mean concentration-time profile in the rat plasma, and the extraction efficiency was greater than 70%, showing a Cmax of 104.48 µg/mL after 6.0 h (tmax) treatment with half-life and area under the curve being 7.0 h and 1273.8 h µg/mL, respectively, indicating the higher antiulcer potency of 3g.


Subject(s)
Stomach Ulcer , Animals , Rats , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Indomethacin/adverse effects , Matrix Metalloproteinase 9/metabolism , Rats, Sprague-Dawley , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/drug therapy , Furans/pharmacology , Furans/therapeutic use
4.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119417, 2023 03.
Article in English | MEDLINE | ID: mdl-36581087

ABSTRACT

Rotenone has widespread beneficial effects in agriculture, fisheries and animal husbandries; however prolonged exposure causes a detrimental effect on the health of personnel working in such industries. Rotenone during its extraction, formulation or usage may cross the blood brain barrier leading to neurodegeneration and the development of Parkinson's disease like symptoms. It is a known inhibitor of the mitochondrial ETC complex I and responsible for impairing the OXPHOS system. Our study showed that rotenone exposure results in an increased production of ROS and decreased ATP level along with a conspicuous loss of mitochondrial membrane potential in N2A cells. The transcription and expression pattern of cofilin, a key component of actin cytoskeleton, was also altered after rotenone exposure; leading to the actin cytoskeleton degradation. We further observed an increased expression, as well as activity of matrix metalloproteinase9 (MMP9) in rotenone exposed N2A cells; suggesting the involvement of inflammation upon rotenone exposure. Simultaneously, an opposite pattern was noticed for the tissue inhibitors of metalloproteinases-1 (TIMP-1) protein, which is a known modulator of MMP9 activity. Additionally, the localization of MMP9 along with alpha-synuclein, UCHL1 and cofilin suggested their close proximity and cross interaction upon rotenone treatment. Furthermore, we observed significant increase in the level of TNF-α upon rotenone exposure along with the phosphorylation of RIPK1, RIPK3 and MLKL that has been identified as the necroptosis markers leading to programmed necroptotic death.


Subject(s)
Protein Kinases , Rotenone , Animals , Rotenone/toxicity , Protein Kinases/metabolism , Necroptosis , Matrix Metalloproteinase 9 , Cytoskeleton/metabolism
5.
J Cell Physiol ; 237(7): 3095-3108, 2022 07.
Article in English | MEDLINE | ID: mdl-35621221

ABSTRACT

Endometriosis is a benign gynecological condition characterized by increased growth, inflammation, invasion, and angiogenesis, partly regulated by a class of enzymes called matrix metalloproteinases (MMPs). The importance of a few MMPs, e.g., MMP-9, -3, and -7 has been studied in endometriosis progression. Although MMP-13 plays an essential role in bone regeneration and cancer, no report has been found on the part of MMP-13 and endometriosis progression. We found the upregulation of MMP-13 expression and activity in patients having endometriosis in the eastern Indian population. In addition, the -77A/G polymorphism of the MMP13 promoter (rs: 2252070) is associated with regulating transcription and subsequent susceptibility to disease. In eastern Indian case-control groups, the effect of the -77A/G single-nucleotide polymorphism on MMP13 promoter activity and its relationship with endometriosis susceptibility was studied. The AG genotype was shown to be more predisposed to endometriosis risk than the GG genotype (p: 0.02; odds ratio [OR]: 1.65, 95% confidence interval [CI]: 1.10-2.49), also AG genotype was more frequent in late-stage patients compared to early-stage (p: 0.03, OR: 2.0, 95% CI: 1.09-3.66). Furthermore, the MMP13 gene levels were greater in AA compared to GG individuals. Additionally, MMP13 promoter-reporter experiments in cultured endometrial epithelial cells and in silico analyses both demonstrated increased transcriptional activity near the G to A transition under basal/IL-1ß -induced/c-FOS overexpressed condition. Overall, c-FOS tighter binding to the A allele-carrying promoter enhances MMP13 transcription, which is further amplified by IL-1ß due to increased c-FOS phosphorylation, promoting MMP-13 production and endometriosis risk.


Subject(s)
Endometriosis , Matrix Metalloproteinase 13/genetics , Alleles , Endometriosis/metabolism , Female , Genetic Predisposition to Disease , Humans , Interleukin-1beta/genetics , Matrix Metalloproteinases/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic , Proto-Oncogene Proteins c-fos/genetics
6.
Front Cell Dev Biol ; 10: 866800, 2022.
Article in English | MEDLINE | ID: mdl-35433685

ABSTRACT

The discovery of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated Cas endonucleases in bacterial and archaeal species allowed scientists to modify, utilized, and revolutionize this tool for genetic alterations in any species. Especially the type II CRISPR-Cas9 system has been extensively studied and utilized for precise and efficient DNA manipulation in plant and mammalian systems over the past few decades. Further, the discovery of the type V CRISPR-Cas12 (Cpf1) system provides more flexibility and precision in DNA manipulation in prokaryotes, plants, and animals. However, much effort has been made to employ and utilize the above CRISPR tools for RNA manipulation but the ability of Cas9 and Cas12 to cut DNA involves the nuisance of off-target effects on genes and thus may not be employed in all RNA-targeting applications. Therefore, the search for new and diverse Cas effectors which can precisely detect and manipulate the targeted RNA begins and this led to the discovery of a novel RNA targeting class 2, type VI CRISPR-Cas13 system. The CRISPR-Cas13 system consists of single RNA-guided Cas13 effector nucleases that solely target single-stranded RNA (ssRNA) in a programmable way without altering the DNA. The Cas13 effectors family comprises four subtypes (a-d) and each subtype has distinctive primary sequence divergence except the two consensuses Higher eukaryotes and prokaryotes nucleotide-binding domain (HEPN) that includes RNase motifs i.e. R-X4-6-H. These two HEPN domains are solely responsible for executing targetable RNA cleavage activity with high efficiency. Further, recent studies have shown that Cas13d exhibits higher efficiency and specificity in cleaving targeted RNA in the mammalian system compared to other Cas13 endonucleases of the Cas13 enzyme family. In addition to that, Cas13d has shown additional advantages over other Cas13 variants, structurally as well as functionally which makes it a prominent and superlative tool for RNA engineering and editing. Therefore considering the advantages of Cas13d over previously characterized Cas13 subtypes, in this review, we encompass the structural and mechanistic properties of type VI CRISPR-Cas13d systems, an overview of the current reported various applications of Cas13d, and the prospects to improve Cas13d based tools for diagnostic and therapeutic purposes.

7.
iScience ; 25(4): 104062, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35359805

ABSTRACT

The gastrointestinal (GI) tract is one of the major sites for reactive oxygen species generation (ROS). Physiological ROS, lower than the threshold concentration, is beneficial for human physiology to preserve gut functional integrity. However, ROS generated in large quantities in presence of external stimuli overwhelms the cellular antioxidant defense mechanism and results in oxidative damage and associated physiological disorder. Graphene quantum dots (GQDs) are a class of carbon-based nanomaterials that have attracted tremendous attention not only for their tunable optical properties but also for their broad-spectrum antioxidant properties. In this report we have shown that GQDs are highly efficient in scavenging ROS and suppressing stress-induced gastric ulcers by targeting the MMP-9 pathway and reducing the inflammatory burden by suppressing excessive oxidative stress by inducing high caspase activity, overproduction of Bax, and downregulation of BCL2.

8.
Life Sci ; 297: 120426, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35218765

ABSTRACT

AIM: This study investigated the link between forced swim induced acute gastric ulceration, inflammation and MMP-3 along with the possible mechanism of protective efficacy of melatonin. MAIN METHODS: We distributed Balb/c mice into four different groups. Group 1 and 2 were given PBS gavage. Group 3 and 4 were given melatonin (60 mg/kg b.wt.) and omeprazole (25 mg/kg b.wt.), respectively, an hour prior to forced swim. Ulcer index, tissue histology, immunohistochemistry, protein carbonylation, lipid peroxidation, Myeloperoxidase, Zymography, Western blotting, reactive oxygen species (ROS), mitochondrial dehydrogenase, mitochondrial transmembrane potential and bioinformatical analysis were performed. KEY FINDINGS: Our data revealed that gastric ulceration due to forced swim stress is responsible for overproduction of ROS, which may be a prime reason for mitochondrial dysfunction and induction of apoptosis via activation of Caspase-3. ROS is also responsible for p38 phosphorylation which in turn increases the activity of MMP-3 in ulcerated milieu, along with the oxidation of proteins, peroxidation of lipids and altered expression patterns of heat shock protein (HSP)-70. Melatonin is shown to reduce the inflammatory burden in gastric milieu and offers gastroprotection by binding to the active site of MMP-3; thereby inhibiting its activity, as suggested by in silico studies. Melatonin also inhibits the downregulation of HSP-70 and activates p38 dephosphorylation and thereby, it rescues gastric mucosal cells from stress-induced ulceration. SIGNIFICANCE: Our findings suggest that, melatonin imparts its gastroprotective effect by down-regulating the activation of MAPK-ERK pathway along with binding to the active site of MMP-3.


Subject(s)
Melatonin , Stomach Ulcer , Animals , Down-Regulation , Indomethacin/adverse effects , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 9/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Mice , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control
9.
Free Radic Biol Med ; 181: 221-234, 2022 03.
Article in English | MEDLINE | ID: mdl-35150824

ABSTRACT

The healing of damaged tissues in gastric tract starts with the extracellular matrix (ECM) remodeling by the action of matrix metalloproteinases (MMPs). Particularly, MMP-2 (gelatinase-A) maintains ECM structure and function by degrading type IV collagen, the major component of basement membranes and by clearing denatured collagen. The proteolytic activities of MMPs are critically balanced by endogenous tissue inhibitors of metalloproteinases (TIMPs) and disruption of this balance results in several diseases. The well-known drug omeprazole is a proton pump inhibitor used for curing gastric ulcer. However, the action of omeprazole in ECM remodeling on gastroprotection has never been explored. Herein, using rat model of gastric ulcer, we report that restraint cold stress caused increase apoptosis to surface epithelia of gastric tissues along with TIMP-3 upregulation and inhibition of MMP-2 activity thereon. In contrast, omeprazole treatment suppressed TIMP-3 while increasing MMP-2 activity and thereby, restoring MMP-2/TIMP-3 balance. Additionally, nanomolar binding constant (Kd = 318 nM) of omeprazole with purified MMP-2 indicates a direct effect of omeprazole in restoring MMP-2 activity. Further in silico simulations revealed a plausible mechanism of action of omeprazole for TIMP-3 deactivation. Altogether, omeprazole restores MMP-2 activity and reduces apoptosis while preventing acute stress-induced gastric ulcer that occurs via suppression of nuclear factor kappa B (NF-κB) activity and peroxisome proliferator-activated receptor gamma activity (PPAR-γ). This represents an unprecedented correlation between physical docking of drug molecule to a protease and the severity of organ injury and provides a novel therapeutic approach to prevent stress induced tissue damage.


Subject(s)
Matrix Metalloproteinase 2 , Stomach Ulcer , Animals , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Omeprazole/pharmacology , Rats , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Stomach Ulcer/prevention & control , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism
10.
Methods Mol Biol ; 2413: 107-120, 2022.
Article in English | MEDLINE | ID: mdl-35044659

ABSTRACT

Zymography is a powerful technique for the assay of different hydrolases that act upon any biological macromolecule. In particular, zymography is used to assay the activities of serine proteases, e.g., matrix metalloproteinases (MMPs), and reverse zymography is used for tissue inhibitors of metalloproteinases (TIMPs) in multifarious experimental samples. Zymography is a method of electrophoretic separation of proteases under non-reducing conditions in a polyacrylamide gel containing substrate. The resolved proteins are renatured by exchange of the anionic detergent with a nonionic one, and the gel is incubated in a specific buffer for the specific proteases. After staining the gel by Coomassie blue staining solution, the proteolytic activities are visualized as clear colorless bands against a dark background. In contrast, reverse zymography is a parallel technique to detect protease inhibitors. In addition to substrate gelatin, proteases (i.e., MMPs) are also incorporated in proper ratio into the polyacrylamide gel. After electrophoresis, during the developing step, the MMPs specifically digest the substrate in regions where TIMPs are absent. Thus, inhibitors/TIMP is represented as dark zones of inhibition against a transparent background after staining. In this chapter, common troubleshoots during sample preparation, running zymography, and data interpretation are discussed. Notes are specified to enhance the sensitivity of the methods. In conclusion, zymography could be crucial for enzyme assay at the nanogram level and for the improvement of new investigative techniques for diseases such as endometriosis, rheumatoid arthritis, osteoarthritis, tumor invasion, and inflammation.


Subject(s)
Electrophoresis/methods , Peptide Hydrolases , Tissue Inhibitor of Metalloproteinases , Female , Humans , Matrix Metalloproteinases/metabolism , Peptide Hydrolases/metabolism , Staining and Labeling , Tissue Inhibitor of Metalloproteinases/metabolism
11.
Front Cell Dev Biol ; 9: 780510, 2021.
Article in English | MEDLINE | ID: mdl-34912809

ABSTRACT

Gynecological illness accounts for around 4.5% of the global disease burden, which is higher than other key global health concerns such as malaria (1.04%), TB (1.9%), ischemic heart disease (2.2%), and maternal disorders (3.5%). Gynecological conditions in women of reproductive age are linked to both in terms of diagnosis and treatment, especially in low-income economies, which poses a serious social problem. A greater understanding of health promotion and illness management can help to prevent diseases in gynecology. Due to the lack of established biomarkers, the identification of gynecological diseases, including malignancies, has proven to be challenging in most situations, and histological exams remain the gold standard. Metalloproteinases (MMPs, ADAMs, ADAMTSs) and their endogenous inhibitors (TIMPs) modulate the protease-dependent bioavailability of local niche components (e.g., growth factors), matrix turnover, and cellular interactions to govern specific physical and biochemical characteristics of the environment. Matrix metalloproteinases (MMPs), A Disintegrin and Metalloproteinase (ADAM), and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) are zinc-dependent endopeptidases that contribute significantly to the disintegration of extracellular matrix proteins and shedding of membrane-bound receptor molecules in several diseases, including arthritis. MMPs are noteworthy genes associated with cancer development, functional angiogenesis, invasion, metastasis, and immune surveillance evasion. These genes are often elevated in cancer and multiple benign gynecological disorders like endometriosis, according to research. Migration through the extracellular matrix, which involves proteolytic activity, is an essential step in tumor cell extravasation and metastasis. However, none of the MMPs' expression patterns, as well as their diagnostic and prognostic potential, have been studied in a pan-cancer context. The latter plays a very important role in cell signaling and might be used as a cancer treatment target. ADAMs are implicated in tumor cell proliferation, angiogenesis, and metastasis. This review will focus on the contribution of the aforementioned metalloproteinases in regulating gynecological disorders and their subsequent manipulation for therapeutic intervention.

12.
iScience ; 24(12): 103428, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34877493

ABSTRACT

Hepatic miRNA, miR-122, plays an important role in controlling metabolic homeostasis in mammalian liver. Intercellular transfer of miR-122 was found to play a role in controlling tissue inflammation. miR-122, as part of extracellular vesicles released by lipid-exposed hepatic cells, are taken up by tissue macrophages to activate them and produce inflammatory cytokines. Matrix metalloprotease 2 or MMP2 was found to be essential for transfer of extracellular vesicles and their miRNA content from hepatic to non-hepatic cells. MMP2 was found to increase the movement of the extracellular vesicles along the extracellular matrix to enhance their uptake in recipient cells. Inhibition of MMP2 restricts functional transfer of hepatic miRNAs across the hepatic and non-hepatic cell boundaries, and by targeting MMP2, we could reduce the innate immune response in mammalian liver by preventing intra-tissue miR-122 transfer. MMP2 thus could be a useful target to restrict high-fat-diet-induced obesity-related metaflammation.

13.
J Indian Soc Periodontol ; 25(5): 386-392, 2021.
Article in English | MEDLINE | ID: mdl-34667380

ABSTRACT

BACKGROUND: Matrix metalloproteinases (MMPs) are a group of host-derived zinc-dependent enzymes which mediates the destruction of the extracellular matrix. In periodontitis, there is excess production of MMPs associated with periodontal tissue destruction. The aim of this study was to estimate the level MMP-9 in both active and latent form in gingival tissue (GT) samples collected from periodontitis patients with different rates of progression and compare it with healthy individuals. MATERIALS AND METHODS: Sixty patients were selected and divided into three groups, 20 each: Group A (slowly/moderately progressing periodontitis), Group B (rapidly progressing periodontitis), and Group C (clinical periodontal health). Plaque index, gingival index, periodontal probing depth (PPD), and clinical attachment level were recorded. GT samples were collected from all 60 patients and MMP-9 expressions were measured using gelatin zymography and western blotting. RESULTS: Levels of active MMP-9 (aMMP-9) and latent MMP-9 (lMMP-9) were significantly high in both Group A (GA) (aMMP-9: 2.05 arbitrary unit [AU]/lMMP-9: 2.54 AU) and Group B (GB) (aMMP-9: 1.32 AU/lMMP-9: 1.74 AU) when compared to that of Group C (GC) (aMMP-9: 0.93/lMMP-9: 1.08 AU). In GA, levels of aMMP-9 showed a significant correlation with PPD values. No other correlations were found. CONCLUSION: The levels of aMMP-9 and lMMP-9 were increased in both the types of periodontitis when compared with periodontally healthy individuals. A significant correlation was found between PPD and activities of aMMP-9 in slowly/moderately progressing periodontitis patients. However, further studies are required to confirm these findings.

14.
Appl Microbiol Biotechnol ; 105(20): 7593-7605, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34542686

ABSTRACT

The emergence of SARS-CoV-2 has brought the world to a standstill, and till date, effective treatments and diagnostics against this idiosyncratic pathogen are lacking. As compared to the standard WHO/CDC qPCR detection method, which consumes several hours for detection, CRISPR-based SHERLOCK, DETECTR, and FELUDA have emerged as rapid diagnostic tools for the detection of the RNA genome of SARS-CoV-2 within an hour with 100% accuracy, specificity, and sensitivity. These attributes of CRISPR-based detection technologies have taken themselves one step ahead of available detection systems and are emerging as an inevitable tool for quick detection of the virus. Further, the discovery of Cas13s nucleases and their orthologs has opened a new corridor for exploitation of Cas13s as an antiviral therapy against SARS-CoV-2 and other viral diseases. One such approach is Prophylactic Antiviral CRISPR in huMAN cells (PACMAN), which needs a long haul to bring into therapy. The approval of SHERLOCK as the first CRISPR-based SARS-CoV-2 test kit by the FDA, for emergency diagnosis of COVID-19 patients, has given positive hope to scientists that sooner human trials of CRISPR-based therapy will be ratified. In this review, we have extensively reviewed the present CRISPR-based approaches, challenges, and future prospects in the light of diagnostics and therapeutics against SARS-CoV-2. KEY POINTS: • The discovery of Cas12 and Cas13 siblings allowed scientists to detect the viral genes. • Cas13d's identification aided scientists in precisely cleaving the SARS-CoV-2 ssRNA. • CRISPR-Cas system acts as "molecular detector and antiviral proctor."


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , CRISPR-Cas Systems , Humans , RNA, Viral , Real-Time Polymerase Chain Reaction
15.
Clin Immunol ; 231: 108804, 2021 10.
Article in English | MEDLINE | ID: mdl-34303849

ABSTRACT

In December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a novel variant of coronavirus has emerged from Wuhan in China and has created havoc impulses across the world with a larger number of fatalities. At the same time, studies are on roll to discover potent vaccine against it or repurposing of approved drugs which are widely adopted are under trial to eradicate the SARS-CoV-2 causing COVID-19 pandemic. Reports have also shown that there are asymptomatic carriers of COVID-19 disease who can transmit the disease to others too. However, the first line defense of the viral attack is body's strong and well-coordinated immune response producing excessive inflammatory innate reaction, thus impaired adaptive host immune defense which lead to death upon the malfunctioning. Considerable works are going on to establish the relation between immune parameters and viral replication that, might alter both the innate and adaptive immune system of COVID-19 patient by up riding a massive cytokines and chemokines secretion. This review mainly gives an account on how SARS-CoV-2 interacts with our immune system and how does our immune system responds to it, along with that drugs which are being used or can be used in fighting COVID-19 disease. The curative therapies as treatment for it have also been addressed in the perspective of adaptive immunity of the patients.


Subject(s)
COVID-19/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Adaptive Immunity , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Epitope Mapping , Humans , Immunity, Cellular
16.
Prog Mol Biol Transl Sci ; 178: 85-98, 2021.
Article in English | MEDLINE | ID: mdl-33685601

ABSTRACT

The discovery of CRISPR-Cas9 system has revolutionized the genome engineering research and has been established as a gold standard genome editing platform. This system has found its application in biochemical researches as well as in medical fields including disease diagnosis, development of therapeutics, etc. The enormous versatility of the CRISPR-Cas9 as a high throughput genome engineering platform, is derailed by its off-target activity. To overcome this, researchers from all over the globe have explored the system structurally and functionally and postulated several strategies to upgrade the system components including redesigning of Cas9 Nuclease and modification of guide RNA(gRNA) structure and customization of the protospacer adjacent motif. Here in this review, we portray the comprehensive overview of the strategies that has been adopted for redesigning the CRISPR-Cas9 system to enhance the efficiency and fidelity of the technology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , RNA, Guide, Kinetoplastida , CRISPR-Cas Systems/genetics , Genome/genetics , Humans , RNA, Guide, Kinetoplastida/genetics
17.
Front Oncol ; 11: 720622, 2021.
Article in English | MEDLINE | ID: mdl-35145899

ABSTRACT

Gene expression can be regulated by small non-coding RNA molecules like microRNAs (miRNAs) which act as cellular mediators necessary for growth, differentiation, proliferation, apoptosis, and metabolism. miRNA deregulation is often observed in many human malignancies, acting both as tumor-promoting and suppressing, and their abnormal expression is linked to unrestrained cellular proliferation, metastasis, and perturbation in DNA damage as well as cell cycle. Matrix Metalloproteases (MMPs) have crucial roles in both growth, and tissue remodeling in normal conditions, as well as in promoting cancer development and metastasis. Herein, we outline an integrated interactive study involving various MMPs and miRNAs and also feature a way in which these communications impact malignant growth, movement, and metastasis. The present review emphasizes on important miRNAs that might impact gynecological cancer progression directly or indirectly via regulating MMPs. Additionally, we address the likely use of miRNA-mediated MMP regulation and their downstream signaling pathways towards the development of a potential treatment of gynecological cancers.

18.
Analyst ; 145(4): 1184-1189, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31859293

ABSTRACT

A series of heterocyclic C5-curcuminoids (bis(arylmethylidene)acetones) (PJ1-PJ6) having a large Stokes shift (Δλ = 104-173 nm) have been synthesized for the selective detection of cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in living cells. The compounds were synthesized using a new methodology via deacetylation under microwave conditions. The photophysical properties of these compounds have been studied. Prominent colour changes from bright yellow to colourless in the presence of thiols were observed for PJ1. Live cell imaging has been employed with PJ1 for the utilization of the probe to detect homocysteine in A375 cells and apoptosis in AGS cells.


Subject(s)
Carbazoles/chemistry , Diarylheptanoids/chemistry , Fluorescent Dyes/chemistry , Indoles/chemistry , Optical Imaging/methods , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Cell Line , Cell Survival , Color , Humans , Limit of Detection , Spectrometry, Fluorescence
19.
Indian J Clin Biochem ; 34(4): 379-394, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31686725

ABSTRACT

ABSTRACT: Tea polyphenols are known to prevent various ailments like cancer, atherosclerosis, hypertension and diabetes. Our study aimed at to decipher the gastroprotective effect of aqueous black tea extract (BTE) against ethanol-induced gastric damage and the role of BTE in modulating MMP-9 activity and expression, both in vivo and in vitro. The protective role of BTE was assessed in Sprague-Dawley rats after inducing damage with 70% ethanol. Human gastric adenocarcinoma cells (AGS) were treated with ethanol in ex vivo experiment. MMP-9 activity and expression were investigated through gelatin zymography and western blotting. Reactive oxygen species (ROS) generation was also studied by fluorescence spectroscopy and confocal microscopy, with or without treatment of BTE both in vivo and in vitro experiments. In addition, the effect of citric acid treated BTE (cBTE), which mimics lemon tea, was examined on ethanol-induced gastropathy. BTE exhibited antiulcer activity through reduction of glutathione depletion, lipid peroxidation, protein oxidation, ROS production and inflammatory cell infiltration in rat gastric tissues. In addition, BTE significantly inhibited synthesis and secretion of proMMP-9 both in vivo and in vitro. The mitochondrial enzymes succinate dehydrogenase and NADH oxidase in rat gastric tissues were downregulated by BTE while protecting gastric ulcer. Citric acid addition to BTE was observer to enrich the lead compound, catechin. Interestingly, cBTE showed higher anti-ulcer activity than the untreated one. BTE shows protective role against ethanol-induced gastric ulcer in rats through scavenging ROS and downregulating proMMP-9 activity. While cBTE shows better protection due to enrichment of catechin and removal of tannins in tea extract leading to enhanced inhibitory role on proMMP-9 activity and ROS production.

20.
Hypertension ; 74(6): 1448-1459, 2019 12.
Article in English | MEDLINE | ID: mdl-31656093

ABSTRACT

MMP (matrix metalloproteinase)-7-a potent extracellular matrix degrading enzyme-is emerging as a new regulator of cardiovascular diseases. However, potential contributions of MMP7 genetic variations to hypertension remain unknown. In this study, we probed for the association of a tag single-nucleotide polymorphism in the MMP7 promoter (-181A/G; rs11568818) with hypertension in an urban South Indian population (n=1501). The heterozygous AG genotype significantly increased risk for hypertension as compared with the wild-type AA genotype (odds ratio, 1.60 [95% CI, 1.25-2.06]; P=2.4×10-4); AG genotype carriers also displayed significantly higher diastolic blood pressure and mean arterial pressure than wild-type AA individuals. The study was replicated in a North Indian population (n=949) (odds ratio, 1.52 [95% CI, 1.11-2.09]; P=0.01). Transient transfection experiments using MMP7 promoter-luciferase reporter constructs revealed that the variant -181G allele conferred greater promoter activity than the -181A allele. Computational prediction and structure-based conformational and molecular dynamics simulation studies suggested higher binding affinity for the CREB (cyclic AMP response element-binding protein) to the -181G promoter. In corroboration, overexpression/downregulation of CREB and chromatin immunoprecipitation experiments provided convincing evidence for stronger binding of CREB with the -181G promoter. The -181G promoter also displayed enhanced responses to hypoxia and epinephrine treatment. The higher promoter activity of -181G allele translated to increased MMP7 protein level, and MMP7-181AG heterozygous individuals displayed elevated plasma MMP7 levels, which positively correlated with blood pressure. In conclusion, the MMP7 A-181G promoter polymorphism increased MMP7 expression under pathophysiological conditions (hypoxic stress and catecholamine excess) via increased interactions with CREB and enhanced the risk for hypertension in its carriers.


Subject(s)
Cyclic AMP Response Element-Binding Protein/genetics , Genetic Predisposition to Disease , Hypertension/epidemiology , Hypertension/genetics , Matrix Metalloproteinase 7/genetics , Polymorphism, Single Nucleotide/genetics , Analysis of Variance , Case-Control Studies , Female , Gene Expression Regulation , Genetic Variation , Genotype , Humans , India/epidemiology , Male , Predictive Value of Tests , Prevalence , Promoter Regions, Genetic/genetics , Retrospective Studies , Risk Assessment , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL
...