Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 19(1): 812, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30419824

ABSTRACT

BACKGROUND: Current heart failure (HF) treatment is based on targeting symptoms and left ventricle dysfunction severity, relying on a common HF pathway paradigm to justify common treatments for HF patients. This common strategy may belie an incomplete understanding of heterogeneous underlying mechanisms and could be a barrier to more precise treatments. We hypothesized we could use RNA-sequencing (RNA-seq) in human heart tissue to delineate HF etiology-specific gene expression signatures. RESULTS: RNA-seq from 64 human left ventricular samples: 37 dilated (DCM), 13 ischemic (ICM), and 14 non-failing (NF). Using a multi-analytic approach including covariate adjustment for age and sex, differentially expressed genes (DEGs) were identified characterizing HF and disease-specific expression. Pathway analysis investigated enrichment for biologically relevant pathways and functions. DCM vs NF and ICM vs NF had shared HF-DEGs that were enriched for the fetal gene program and mitochondrial dysfunction. DCM-specific DEGs were enriched for cell-cell and cell-matrix adhesion pathways. ICM-specific DEGs were enriched for cytoskeletal and immune pathway activation. Using the ICM and DCM DEG signatures from our data we were able to correctly classify the phenotypes of 24/31 ICM and 32/36 DCM samples from publicly available replication datasets. CONCLUSIONS: Our results demonstrate the commonality of mitochondrial dysfunction in end-stage HF but more importantly reveal key etiology-specific signatures. Dysfunctional cell-cell and cell-matrix adhesion signatures typified DCM whereas signals related to immune and fibrotic responses were seen in ICM. These findings suggest that transcriptome signatures may distinguish end-stage heart failure, shedding light on underlying biological differences between ICM and DCM.


Subject(s)
Biomarkers/analysis , Cardiomyopathy, Dilated/genetics , Cell Adhesion , Gene Expression Profiling/methods , Heart Failure/genetics , Immunity, Cellular , Myocardial Ischemia/genetics , Cardiomyopathy, Dilated/pathology , Case-Control Studies , Female , Heart Failure/pathology , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged , Myocardial Ischemia/pathology , Transcriptome
2.
Methods Mol Biol ; 717: 233-44, 2011.
Article in English | MEDLINE | ID: mdl-21370034

ABSTRACT

Simultaneous detection of multiple tissue antigens is one of the most frequently used immunohistochemical (IHC) techniques. In order to avoid cross-reactivity of each secondary antibody with multiple primary antibodies when doing either dual- or triple-labeling immunofluorescence, it is necessary to use primary antibodies raised in different host species such as mouse, rabbit, and goat. However, in many cases, suitable primary antibodies raised in different species are unavailable. We have developed a novel technique for triple-labeling immunofluorescence that can be used with primary antibodies derived from a single host source. This technique includes modification of one primary antibody with biotin (ChromaLink™ Biotin) and a second primary antibody with DIG (ChromaLink™ Digoxigenin). For IHC staining, cells or tissue sections are incubated first with unconjugated primary antibody against the first target protein followed by detection with antiprimary secondary antibody conjugated to NorthernLights™ NL-637 tag (fluorescence in the far-red spectral region). Subsequently, the same tissue sections are incubated with a mixture of same species biotin-labeled primary antibody (against the second target protein) and DIG-labeled primary antibody (against the third target protein) followed by detection using a mixture of Streptavidin NorthernLights™ NL-493 tag (green fluorescence) and anti-DIG secondary antibody conjugated to a Rhodamine Red X™ tag (red fluorescence). This technique provides good spectral separation of colors depicting different antigens of interest while avoiding cross-reactivity between irrelevant primary and secondary antibodies. In addition, this multiplexed IHC technique provides significant convenience to researchers who have only primary antibodies raised in the same host species at their disposal.


Subject(s)
Antibodies/chemistry , Fluorescent Antibody Technique/methods , Immunoconjugates/chemistry , Animals , Antibodies, Phospho-Specific/chemistry , Biotinylation , Digoxigenin/chemistry , Humans , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...