Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Alzheimers Dement ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39233587

ABSTRACT

BACKGROUND: Few rare variants have been identified in genetic loci from genome-wide association studies (GWAS) of Alzheimer's disease (AD), limiting understanding of mechanisms, risk assessment, and genetic counseling. METHODS: Using genome sequencing data from 197 families in the National Institute on Aging Alzheimer's Disease Family Based Study and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS: Eighty-six rare missense or loss-of-function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) families Apolipoprotein E (APOE)-𝜀4 was the only variant segregating. However, in 60.3% of families, APOE 𝜀4, missense, and LoF variants were not found within the GWAS loci. DISCUSSION: Although APOE 𝜀4and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants. HIGHLIGHTS: Rare coding variants from GWAS loci segregate in familial Alzheimer's disease. Missense or loss of function variants were found segregating in nearly 7% of families. APOE-𝜀4 was the only segregating variant in 29.7% in familial Alzheimer's disease. In Hispanic and non-Hispanic families, different variants were found in segregating genes. No coding variants were found segregating in many Hispanic and non-Hispanic families.

2.
Alzheimers Dement (Amst) ; 16(3): e70000, 2024.
Article in English | MEDLINE | ID: mdl-39183746

ABSTRACT

INTRODUCTION: Neuropsychiatric symptoms (NPS) are highly prevalent in Alzheimer's disease (AD). There are no effective treatments targeting these symptoms. METHODS: To facilitate identification of causative mechanistic pathways, we initiated an effort (NIH: U01AG079850) to collate, harmonize, and analyze all available NPS data (≈ 100,000 samples) of diverse ancestries with whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP). RESULTS: This study will generate a genomic resource for Alzheimer's disease with both harmonized whole-genome sequencing and NPS phenotype data that will be publicly available through NIAGADS. Primary analyses will (1) identify novel genetic risk factors associated with NPS in AD, (2) characterize the shared genetic architecture of NPS in AD and primary psychiatric disorders, and (3) assess the role of ancestry effects in the etiology of NPS in AD. DISCUSSION: Expansion of the ADSP to harmonize and refine NPS phenotypes coupled with the proposed core analyses will lay the foundation to disentangle the molecular mechanisms underlying these detrimental symptoms in AD in diverse populations. Highlights: Neuropsychiatric symptoms (NPS) are highly prevalent in Alzheimer's disease (AD).There are no effective treatments targeting NPS in AD.The current effort aims to collate, harmonize, and analyze all NPS data from the Alzheimer's Disease Sequencing Project.Core analyses will identify underlying genetic factors and mechanistic pathways.The harmonized genomic and phenotypic data from this initiative will be available through National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site.

3.
Alzheimers Dement (N Y) ; 10(2): e12472, 2024.
Article in English | MEDLINE | ID: mdl-38784964

ABSTRACT

INTRODUCTION: Individuals with Alzheimer's disease (AD) commonly experience neuropsychiatric symptoms of psychosis (AD+P) and/or affective disturbance (depression, anxiety, and/or irritability, AD+A). This study's goal was to identify the genetic architecture of AD+P and AD+A, as well as their genetically correlated phenotypes. METHODS: Genome-wide association meta-analysis of 9988 AD participants from six source studies with participants characterized for AD+P AD+A, and a joint phenotype (AD+A+P). RESULTS: AD+P and AD+A were genetically correlated. However, AD+P and AD+A diverged in their genetic correlations with psychiatric phenotypes in individuals without AD. AD+P was negatively genetically correlated with bipolar disorder and positively with depressive symptoms. AD+A was positively correlated with anxiety disorder and more strongly correlated than AD+P with depressive symptoms. AD+P and AD+A+P had significant estimated heritability, whereas AD+A did not. Examination of the loci most strongly associated with the three phenotypes revealed overlapping and unique associations. DISCUSSION: AD+P, AD+A, and AD+A+P have both shared and divergent genetic associations pointing to the importance of incorporating genetic insights into future treatment development. Highlights: It has long been known that psychotic and affective symptoms are often comorbid in individuals diagnosed with Alzheimer's disease. Here we examined for the first time the genetic architecture underlying this clinical observation, determining that psychotic and affective phenotypes in Alzheimer's disease are genetically correlated.Nevertheless, psychotic and affective phenotypes in Alzheimer's disease diverged in their genetic correlations with psychiatric phenotypes assessed in individuals without Alzheimer's disease. Psychosis in Alzheimer's disease was negatively genetically correlated with bipolar disorder and positively with depressive symptoms, whereas the affective phenotypes in Alzheimer's disease were positively correlated with anxiety disorder and more strongly correlated than psychosis with depressive symptoms.Psychosis in Alzheimer's disease, and the joint psychotic and affective phenotype, had significant estimated heritability, whereas the affective in AD did not.Examination of the loci most strongly associated with the psychotic, affective, or joint phenotypes revealed overlapping and unique associations.

4.
Mol Neurodegener ; 19(1): 40, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750570

ABSTRACT

Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms. Several blood-based biomarkers have shown high potential for accurately detecting AD pathophysiology. As a result, there has been considerable interest in applying these biomarkers for diagnosis and prognosis, as surrogate metrics to investigate the impact of various covariates on AD pathophysiology and to accelerate AD therapeutic trials and monitor treatment effects. However, the lack of standardization of how blood samples and collected, processed, stored analyzed and reported can affect the reproducibility of these biomarker measurements, potentially hindering progress toward their widespread use in clinical and research settings. To help address these issues, we provide fundamental guidelines developed according to recent research findings on the impact of sample handling on blood biomarker measurements. These guidelines cover important considerations including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting. Furthermore, the proposed guidelines include best practices for appropriate blood handling procedures for genetic and ribonucleic acid analyses. While we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., amyloid-beta [Aß]40, Aß42, Aß42/40 ratio, total-tau, phosphorylated-tau, neurofilament light chain, brain-derived tau and glial fibrillary acidic protein), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers. We also anticipate that these guidelines will assist investigators in planning and executing biomarker research, enabling harmonization of sample handling to improve comparability across studies.


Subject(s)
Alzheimer Disease , Biological Specimen Banks , Biomarkers , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Biomarkers/blood , Biological Specimen Banks/standards , Research Design/standards , Amyloid beta-Peptides/blood , Specimen Handling/standards , Specimen Handling/methods , tau Proteins/blood
5.
Trends Mol Med ; 30(8): 713-722, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821772

ABSTRACT

Neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD) constitute multifaceted behavioral manifestations that reflect processes of emotional regulation, thinking, and social behavior. They are as prevalent in AD as cognitive impairment and develop independently during the progression of neurodegeneration. As studying NPSs in AD is clinically challenging, most AD research to date has focused on cognitive decline. In this opinion article we summarize emerging literature on the prevalence, time course, and the underlying genetic, molecular, and pathological mechanisms related to NPSs in AD. Overall, we propose that NPSs constitute a cluster of core symptoms in AD, and understanding their neurobiology can lead to a more holistic approach to AD research, paving the way for more accurate diagnostic tests and personalized treatments embracing the goals of precision medicine.


Subject(s)
Alzheimer Disease , Phenotype , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Humans , Memory Disorders/etiology , Animals , Cognitive Dysfunction/etiology
6.
medRxiv ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38196599

ABSTRACT

BACKGROUND: Few rare variants have been identified in genetic loci from genome wide association studies of Alzheimer's disease (AD), limiting understanding of mechanisms and risk assessment, and genetic counseling. METHODS: Using genome sequencing data from 197 families in The NIA Alzheimer's Disease Family Based Study, and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS: Eighty-six rare missense or loss of function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) of families APOE-e4 was the only variant segregating. However, in 60.3% of families neither APOE-e4 nor missense or LoF variants were found within the GWAS loci. DISCUSSION: Although APOE-ε4 and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants.

7.
Neurobiol Dis ; 185: 106262, 2023 09.
Article in English | MEDLINE | ID: mdl-37586566

ABSTRACT

BACKGROUND: Individuals with schizophrenia are at elevated genetic risks for comorbid cannabis use, and often experience exacerbations of cognitive and psychotic symptoms when exposed to cannabis. These findings have led a number of investigators to examine cannabinoid CB1 receptor (CB1R) alterations in schizophrenia, though with conflicting results. We recently demonstrated the presence of CB1R in both excitatory and inhibitory boutons in the human prefrontal cortex, with differential levels of the receptor between bouton types. We hypothesized that the differential enrichment of CB1R between bouton types - a factor previously unaccounted for when examining CB1R changes in schizophrenia - may resolve prior discrepant reports and increase our insight into the effects of CB1R alterations on the pathophysiology of schizophrenia. METHODS: Using co-labeling immunohistochemistry and fluorescent microscopy, we examined total CB1R levels and CB1R levels within excitatory (vGlut1-positive) and inhibitory (vGAT-positive) boutons of prefrontal cortex samples from ten pairs of individuals (nine male pairs and one female pair) diagnosed with schizophrenia and non-psychiatric comparisons. RESULTS: Significantly higher total CB1R levels were found within samples from individuals with schizophrenia. Terminal type-specific analyses identified significantly higher CB1R levels within excitatory boutons in samples from individuals with schizophrenia relative to comparisons. In contrast, CB1R levels within the subset of inhibitory boutons that normally express high CB1R levels (presumptive cholecystokinin neuron boutons) were lower in samples from individuals with schizophrenia relative to comparison samples. CONCLUSION: Given CB1R's role in suppressing neurotransmission upon activation, these results suggest an overall shift in excitatory and inhibitory balance regulation toward a net reduction of excitatory activity in schizophrenia.


Subject(s)
Cannabinoids , Schizophrenia , Humans , Male , Female , Schizophrenia/genetics , Receptor, Cannabinoid, CB1 , Pilot Projects , Cannabinoids/pharmacology , Prefrontal Cortex
8.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37513822

ABSTRACT

Around 50% of patients with Alzheimer's disease (AD) may experience psychotic symptoms after onset, resulting in a subtype of AD known as psychosis in AD (AD + P). This subtype is characterized by more rapid cognitive decline compared to AD patients without psychosis. Therefore, there is a great need to identify risk factors for the development of AD + P and explore potential treatment options. In this study, we enhanced our deep learning model, DeepBiomarker, to predict the onset of psychosis in AD utilizing data from electronic medical records (EMRs). The model demonstrated superior predictive capacity with an AUC (area under curve) of 0.907, significantly surpassing conventional risk prediction models. Utilizing a perturbation-based method, we identified key features from multiple medications, comorbidities, and abnormal laboratory tests, which notably influenced the prediction outcomes. Our findings demonstrated substantial agreement with existing studies, underscoring the vital role of metabolic syndrome, inflammation, and liver function pathways in AD + P. Importantly, the DeepBiomarker model not only offers a precise prediction of AD + P onset but also provides mechanistic understanding, potentially informing the development of innovative treatments. With additional validation, this approach could significantly contribute to early detection and prevention strategies for AD + P, thereby improving patient outcomes and quality of life.

9.
Sci Adv ; 9(23): eade5973, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37294752

ABSTRACT

Human genetics strongly support the involvement of synaptopathy in psychiatric disorders. However, trans-scale causality linking synapse pathology to behavioral changes is lacking. To address this question, we examined the effects of synaptic inputs on dendrites, cells, and behaviors of mice with knockdown of SETD1A and DISC1, which are validated animal models of schizophrenia. Both models exhibited an overrepresentation of extra-large (XL) synapses, which evoked supralinear dendritic and somatic integration, resulting in increased neuronal firing. The probability of XL spines correlated negatively with working memory, and the optical prevention of XL spine generation restored working memory impairment. Furthermore, XL synapses were more abundant in the postmortem brains of patients with schizophrenia than in those of matched controls. Our findings suggest that working memory performance, a pivotal aspect of psychiatric symptoms, is shaped by distorted dendritic and somatic integration via XL spines.


Subject(s)
Dendritic Spines , Schizophrenia , Humans , Mice , Animals , Dendritic Spines/physiology , Neurons/physiology , Brain , Memory, Short-Term/physiology , Schizophrenia/pathology
10.
CPT Pharmacometrics Syst Pharmacol ; 12(8): 1119-1131, 2023 08.
Article in English | MEDLINE | ID: mdl-37128639

ABSTRACT

Psychotic symptoms are reported as one of the most common complications of Alzheimer's disease (AD), in whom they are associated with more rapid deterioration and increased mortality. Empiric treatments, namely first and second-generation antipsychotics, confer modest efficacy in patients with AD and with psychosis (AD+P) and themselves increase mortality. Recent studies suggested the use and beneficial effects of antidepressants among patients with AD+P. This motivates our rationale for exploring their potential as a novel combination therapy option among these patients. We included electronic medical records of 10,260 patients with AD in our study. Survival analysis was performed to assess the effects of the combination of antipsychotics and antidepressants on the mortality of these patients. A protein-protein interaction network representing AD+P was built, and network analysis methods were used to quantify the efficacy of these drugs on AD+P. A combined score was developed to measure the potential synergetic effect against AD+P. Our survival analyses showed that the co-administration of antidepressants with antipsychotics have a significant beneficial effect in reducing mortality. Our network analysis showed that the targets of antipsychotics and antidepressants are well-separated, and antipsychotics and antidepressants have similar Signed Jaccard Index (SJI) scores to AD+P. Eight drug pairs, including some popular recommendations like aripiprazole/sertraline, showed higher than average scores which suggest their potential in treating AD+P via strong synergetic effects. Our proposed combinations of antipsychotic and antidepressant therapy showed a strong superiority over current antipsychotics treatment for AD+P. The observed beneficial effects can be further strengthened by optimizing drug-pair selection based on our systems pharmacology analysis.


Subject(s)
Alzheimer Disease , Antipsychotic Agents , Psychotic Disorders , Humans , Antipsychotic Agents/therapeutic use , Alzheimer Disease/drug therapy , Psychotic Disorders/drug therapy , Psychotic Disorders/etiology , Antidepressive Agents/therapeutic use
11.
J Alzheimers Dis ; 94(1): 227-246, 2023.
Article in English | MEDLINE | ID: mdl-37212097

ABSTRACT

BACKGROUND: Altered glutamatergic neurotransmission may contribute to impaired default mode network (DMN) function in Alzheimer's disease (AD). Among the DMN hub regions, frontal cortex (FC) was suggested to undergo a glutamatergic plasticity response in prodromal AD, while the status of glutamatergic synapses in the precuneus (PreC) during clinical-neuropathological AD progression is not known. OBJECTIVE: To quantify vesicular glutamate transporter VGluT1- and VGluT2-containing synaptic terminals in PreC and FC across clinical stages of AD. METHODS: Unbiased sampling and quantitative confocal immunofluorescence of cortical VGluT1- and VGluT2-immunoreactive profiles and spinophilin-labeled dendritic spines were performed in cases with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild-moderate AD (mAD), or moderate-severe AD (sAD). RESULTS: In both regions, loss of VGluT1-positive profile density was seen in sAD compared to NCI, MCI, and mAD. VGluT1-positive profile intensity in PreC did not differ across groups, while in FC it was greater in MCI, mAD, and sAD compared to NCI. VGluT2 measures were stable in PreC while FC had greater VGluT2-positive profile density in MCI compared to sAD, but not NCI or mAD. Spinophilin measures in PreC were lower in mAD and sAD compared to NCI, while in FC they were stable across groups. Lower VGluT1 and spinophilin measures in PreC, but not FC, correlated with greater neuropathology. CONCLUSION: Frank loss of VGluT1 in advanced AD relative to NCI occurs in both DMN regions. In FC, an upregulation of VGluT1 protein content in remaining glutamatergic terminals may contribute to this region's plasticity response in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Vesicular Glutamate Transport Proteins/metabolism , Default Mode Network , Vesicular Glutamate Transport Protein 2/metabolism , Presynaptic Terminals/metabolism , Vesicular Glutamate Transport Protein 1/metabolism
12.
bioRxiv ; 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37090672

ABSTRACT

Background: Individuals with schizophrenia are at elevated genetic risks for comorbid cannabis use, and often experience exacerbations of cognitive and psychotic symptoms when exposed to cannabis. These findings have led a number of investigators to examine cannabinoid CB1 receptor (CB1R) alterations in schizophrenia, though with conflicting results. We recently demonstrated the presence of CB1R in both excitatory and inhibitory boutons in the human prefrontal cortex, with differential levels of the receptor between bouton types. We hypothesized that the differential enrichment of CB1R between bouton types - a factor previously unaccounted for when examining CB1R changes in schizophrenia - may resolve prior discrepant reports and increase our insight into the effects of CB1R alterations on the pathophysiology of schizophrenia. Methods: Using co-labeling immunohistochemistry and fluorescent microscopy, we examined total CB1R levels and CB1R levels within excitatory (vGlut1-positive) and inhibitory (vGAT-positive) boutons of prefrontal cortex samples from ten pairs of individuals diagnosed with schizophrenia and non-psychiatric comparisons. Results: Significantly higher total CB1R levels were found within samples from individuals with schizophrenia. Terminal type-specific analyses identified significantly higher CB1R levels within excitatory boutons in samples from individuals with schizophrenia relative to comparisons. In contrast, CB1R levels within the subset of inhibitory boutons that normally express high CB1R levels (presumptive cholecystokinin neuron boutons) were lower in samples from individuals with schizophrenia relative to comparison samples. Conclusion: Given CB1R's role in suppressing neurotransmission upon activation, these results suggest an overall shift in excitatory and inhibitory balance regulation toward a net reduction of excitatory activity in schizophrenia.

13.
Ann Clin Transl Neurol ; 10(5): 744-756, 2023 05.
Article in English | MEDLINE | ID: mdl-36946865

ABSTRACT

OBJECTIVE: To compute penetrance and recurrence risk using a genome-wide PRS (including and excluding the APOE region) in families with Alzheimer's disease. METHODS: Genotypes from the National Institute on Aging Late-Onset Alzheimer's Disease Family-Based Study and a study of familial Alzheimer's disease in Caribbean Hispanics were used to compute PRS with and without variants in the 2 MB region flanking APOE. PRS was calculated in using clumping/thresholding and Bayesian methods and was assessed for association with Alzheimer's disease and age at onset. Penetrance and recurrence risk for carriers in highest and lowest PRS quintiles were compared separately within APOE-ε4 carriers and non-carriers. RESULTS: PRS excluding the APOE region was strongly associated with clinical and neuropathological diagnosis of AD. PRS association with AD was similar in participants who did not carry an APOE-ε4 allele (OR = 1.74 [1.53-1.91]) compared with APOE-ε4 carriers (1.53 [1.4-1.68]). Compared to the lowest quintile, the highest PRS quintile had a 10% higher penetrance at age 70 (p = 0.0006) and a 20% higher penetrance at age 80 (p < 10e-05). Stratifying by APOE-ε4 allele, PRS in the highest quintile was significantly more penetrant than the lowest quintile, both, within APOE-ε4 carriers (14.5% higher at age 80, p = 0.002) and non-carriers (26% higher at 80, p < 10e-05). Recurrence risk for siblings conferred by a co-sibling in the highest PRS quintile increased from 4% between the ages of 65-74 years to 39% at age 85 and older. INTERPRETATION: PRS can be used to estimate penetrance and recurrence risk in familial Alzheimer's disease among carriers and non-carries of APOE-ε4.


Subject(s)
Alzheimer Disease , Humans , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Penetrance , Bayes Theorem , Risk Factors , Apolipoproteins E/genetics
14.
medRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36747620

ABSTRACT

Background: Psychotic symptoms are reported as one of the most common complications of Alzheimer's disease (AD), affecting approximately half of AD patients, in whom they are associated with more rapid deterioration and increased mortality. Empiric treatments, namely first and second-generation antipsychotics, confer modest efficacy in AD patients with psychosis (AD+P) and themselves increase mortality. A recent genome-wide meta-analysis and early clinical trials suggest the use and beneficial effects of antidepressants among AD+P patients. This motivates our rationale for exploring their potential as a novel combination therapy option amongst these patients. Methods: We included University of Pittsburgh Medical Center (UPMC) electronic medical records (EMRs) of 10,260 AD patients from January 2004 and October 2019 in our study. Survival analysis was performed to assess the effects of the combination of antipsychotics and antidepressants on the mortality of these patients. To provide more valuable insights on the hidden mechanisms of the combinatorial therapy, a protein-protein interaction (PPI) network representing AD+P was built, and network analysis methods were used to quantify the efficacy of these drugs on AD+P. An indicator score combining the measurements on the separation between drugs and the proximity between the drugs and AD+P was used to measure the effect of an antipsychotic-antidepressant drug pair against AD+P. Results: Our survival analyses replicated that antipsychotic usage is strongly associated with increased mortality in AD patients while the co-administration of antidepressants with antipsychotics showed a significant beneficial effect in reducing mortality. Our network analysis showed that the targets of antipsychotics and antidepressants are well-separated, and antipsychotics and antidepressants have similar proximity scores to AD+P. Eight drug pairs, including some popular recommendations like Aripiprazole/Sertraline and other pairs not reported previously like Iloperidone/Maprotiline showed higher than average indicator scores which suggest their potential in treating AD+P via strong synergetic effects as seen in our study. Conclusion: Our proposed combinations of antipsychotics and antidepressants therapy showed a strong superiority over current antipsychotics treatment for AD+P. The observed beneficial effects can be further strengthened by optimizing drug-pair selection based on our systems pharmacology analysis.

15.
Front Mol Neurosci ; 15: 974890, 2022.
Article in English | MEDLINE | ID: mdl-36187353

ABSTRACT

Microtubule-associated protein 2 (MAP2) is the predominant cytoskeletal regulator within neuronal dendrites, abundant and specific enough to serve as a robust somatodendritic marker. It influences microtubule dynamics and microtubule/actin interactions to control neurite outgrowth and synaptic functions, similarly to the closely related MAP Tau. Though pathology of Tau has been well appreciated in the context of neurodegenerative disorders, the consequences of pathologically dysregulated MAP2 have been little explored, despite alterations in its immunoreactivity, expression, splicing and/or stability being observed in a variety of neurodegenerative and neuropsychiatric disorders including Huntington's disease, prion disease, schizophrenia, autism, major depression and bipolar disorder. Here we review the understood structure and functions of MAP2, including in neurite outgrowth, synaptic plasticity, and regulation of protein folding/transport. We also describe known and potential mechanisms by which MAP2 can be regulated via post-translational modification. Then, we assess existing evidence of its dysregulation in various brain disorders, including from immunohistochemical and (phospho) proteomic data. We propose pathways by which MAP2 pathology could contribute to endophenotypes which characterize these disorders, giving rise to the concept of a "MAP2opathy"-a series of disorders characterized by alterations in MAP2 function.

16.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36151774

ABSTRACT

Approximately 50% of Alzheimer's disease (AD) patients will develop psychotic symptoms and these patients will experience severe rapid cognitive decline compared with those without psychosis (AD-P). Currently, no medication has been approved by the Food and Drug Administration for AD with psychosis (AD+P) specifically, although atypical antipsychotics are widely used in clinical practice. These drugs have demonstrated modest efficacy in managing psychosis in individuals with AD, with an increased frequency of adverse events, including excess mortality. We compared the differences between the genetic variations/genes associated with AD+P and schizophrenia from existing Genome-Wide Association Study and differentially expressed genes (DEGs). We also constructed disease-specific protein-protein interaction networks for AD+P and schizophrenia. Network efficiency was then calculated to characterize the topological structures of these two networks. The efficiency of antipsychotics in these two networks was calculated. A weight adjustment based on binding affinity to drug targets was later applied to refine our results, and 2013 and 2123 genes were identified as related to AD+P and schizophrenia, respectively, with only 115 genes shared. Antipsychotics showed a significantly lower efficiency in the AD+P network than in the schizophrenia network (P < 0.001) indicating that antipsychotics may have less impact in AD+P than in schizophrenia. AD+P may be caused by mechanisms distinct from those in schizophrenia which result in a decreased efficacy of antipsychotics in AD+P. In addition, the network analysis methods provided quantitative explanations of the lower efficacy of antipsychotics in AD+P.


Subject(s)
Alzheimer Disease , Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Humans , Antipsychotic Agents/therapeutic use , Schizophrenia/drug therapy , Schizophrenia/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Genome-Wide Association Study , Psychotic Disorders/diagnosis , Psychotic Disorders/drug therapy , Psychotic Disorders/etiology
17.
Alzheimers Dement (N Y) ; 8(1): e12324, 2022.
Article in English | MEDLINE | ID: mdl-36016832

ABSTRACT

Introduction: Current treatments for psychosis in Alzheimer's disease (AD), a syndrome characterized by more rapid deterioration and reduced synaptic protein abundance relative to non-psychotic AD, are inadequate. Fingolimod, a currently US Food and Drug Administration (FDA)-approved pharmacotherapy for multiple sclerosis, alters synaptic protein expression and warrants preclinical appraisal as a candidate pharmacotherapy for psychosis in AD. Methods: Presenilin and amyloid precursor protein transgenic mice (APPswe/PSEN1dE9) and wild-type mice were randomized to fingolimod or saline for 7 days. Psychosis-associated behaviors were quantified by open field testing, pre-pulse inhibition of the acoustic startle response testing, and habituation of the acoustic startle response testing. Synaptic proteins were quantified by liquid chromatography/mass spectrometry in homogenate and postsynaptic density fractions. Results: Fingolimod treatment increased the synaptic protein abundance in cortical homogenates and normalized psychosis-associated behaviors in APPswe/PSEN1dE9 mice relative to saline. Mitochondrial-related proteins were preferentially altered by fingolimod treatment and correlated with improvements in psychosis-associated behaviors. Discussion: Preclinical studies employing complementary psychosis-associated behavioral assessments and proteomic evaluations across multiple AD-related models are warranted to replicate the current study and further investigate fingolimod as a candidate treatment for psychosis in AD.

18.
Transl Psychiatry ; 12(1): 340, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35987687

ABSTRACT

DNA methylation (DNAm), the addition of a methyl group to a cytosine in DNA, plays an important role in the regulation of gene expression. Single-nucleotide polymorphisms (SNPs) associated with schizophrenia (SZ) by genome-wide association studies (GWAS) often influence local DNAm levels. Thus, DNAm alterations, acting through effects on gene expression, represent one potential mechanism by which SZ-associated SNPs confer risk. In this study, we investigated genome-wide DNAm in postmortem superior temporal gyrus from 44 subjects with SZ and 44 non-psychiatric comparison subjects using Illumina Infinium MethylationEPIC BeadChip microarrays, and extracted cell-type-specific methylation signals by applying tensor composition analysis. We identified SZ-associated differential methylation at 242 sites, and 44 regions containing two or more sites (FDR cutoff of q = 0.1) and determined a subset of these were cell-type specific. We found mitotic arrest deficient 1-like 1 (MAD1L1), a gene within an established GWAS risk locus, harbored robust SZ-associated differential methylation. We investigated the potential role of MAD1L1 DNAm in conferring SZ risk by assessing for colocalization among quantitative trait loci for methylation and gene transcripts (mQTLs and tQTLs) in brain tissue and GWAS signal at the locus using multiple-trait-colocalization analysis. We found that mQTLs and tQTLs colocalized with the GWAS signal (posterior probability >0.8). Our findings suggest that alterations in MAD1L1 methylation and transcription may mediate risk for SZ at the MAD1L1-containing locus. Future studies to identify how SZ-associated differential methylation affects MAD1L1 biological function are indicated.


Subject(s)
Cell Cycle Proteins , DNA Methylation , Schizophrenia , Brain/metabolism , Cell Cycle Proteins/genetics , DNA/metabolism , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Schizophrenia/metabolism
19.
J Alzheimers Dis ; 88(4): 1377-1384, 2022.
Article in English | MEDLINE | ID: mdl-35786652

ABSTRACT

BACKGROUND: This memory-clinic study joins efforts to study earliest clinical signs and symptoms of Alzheimer's disease and related dementias: subjective reports and objective neuropsychological test performance. OBJECTIVE: The memory-clinic denoted two clinical "grey zones": 1) subjective cognitive decline (SCD; n = 107) with normal objective test scores, and 2) isolated low test scores (ILTS; n = 74) without subjective complaints to observe risk for future decline. METHODS: Initial and annual follow-up clinical research evaluations and consensus diagnosis were used to evaluate baseline characteristics and clinical progression over 2.7 years, compared to normal controls (NC; n = 117). RESULTS: The ILTS group was on average older than the NC and SCD groups. They had a higher proportion of people identifying as belonging to a minoritized racial group. The SCD group had significantly more years of education than the ILTS group. Both ILTS and SCD groups had increased risk of progression to mild cognitive impairment. Older age, minoritized racial identity, and baseline cognitive classification were risk factors for progression. CONCLUSION: The two baseline risk groups look different from each other, especially with respect to demographic correlates, but both groups predict faster progression than controls, over and above demographic differences. Varied presentations of early risk are important to recognize and may advance cognitive health equity in aging.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/psychology , Cognitive Dysfunction/psychology , Disease Progression , Humans , Neuropsychological Tests , Risk Factors
20.
Sci Rep ; 12(1): 9605, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35688916

ABSTRACT

Alterations in cannabinoid CB1 receptor (CB1R) are implicated in various psychiatric disorders. CB1R participates in both depolarization induced suppression of inhibition (DSI) and depolarization induced suppression of excitation (DSE), suggesting its involvement in regulating excitatory and inhibitory (E/I) balance. Prior studies examining neuronal cell type specific CB1R distribution have been conducted near exclusively within rodents. Identification of these distribution patterns within the human and non-human primate cortex is essential to increase our insight into its function. Using co-labeling immunohistochemistry and fluorescent microscopy, we examined CB1R protein levels within excitatory and inhibitory boutons of male human and non-human primate prefrontal cortex and auditory cortices, regions involved in the behavioral effects of exogenous cannabinoid exposures. We found that CB1R was present in both bouton populations within all brain regions examined in both species. Significantly higher CB1R levels were found within inhibitory than within excitatory boutons across all regions in both species, although the cell type by brain region interactions differed between the two species. Our results support the importance of conducting more in-depth CB1R examinations to understand how cell type and brain region dependent differences contribute to regional E/I balance regulation, and how aberrations in CB1R distribution may contribute to pathology.


Subject(s)
Cannabinoids , Animals , Cannabinoids/metabolism , Humans , Male , Neurons/metabolism , Prefrontal Cortex/physiology , Primates , Receptor, Cannabinoid, CB1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL