Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Biol Psychiatry Glob Open Sci ; 4(5): 100342, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39092138

ABSTRACT

Background: The amygdala is highly implicated in an array of psychiatric disorders but is not accessible using currently available noninvasive neuromodulatory techniques. Low-intensity transcranial focused ultrasound (TFUS) is a neuromodulatory technique that has the capability of reaching subcortical regions noninvasively. Methods: We studied healthy older adult participants (N = 21, ages 48-79 years) who received TFUS targeting the right amygdala and left entorhinal cortex (active control region) using a 2-visit within-participant crossover design. Before and after TFUS, behavioral measures were collected via the State-Trait Anxiety Inventory and an emotional reactivity and regulation task utilizing neutral and negatively valenced images from the International Affective Picture System. Heart rate and self-reported emotional valence and arousal were measured during the emotional reactivity and regulation task to investigate subjective and physiological responses to the task. Results: Significant increases in both self-reported arousal in response to negative images and heart rate during emotional reactivity and regulation task intertrial intervals were observed when TFUS targeted the amygdala; these changes were not evident when the entorhinal cortex was targeted. No significant changes were found for state anxiety, self-reported valence to the negative images, cardiac response to the negative images, or emotion regulation. Conclusions: The results of this study provide preliminary evidence that a single session of TFUS targeting the amygdala may alter psychophysiological and subjective emotional responses, indicating some potential for future neuropsychiatric applications. However, more work on TFUS parameters and targeting optimization is necessary to determine how to elicit changes in a more clinically advantageous way.


Transcranial focused ultrasound (TFUS) is an emerging brain stimulation technique with the ability to noninvasively alter the activity of deep brain regions. Studying the potential for TFUS to alter behavioral response and processing, this study employed MRI-guided TFUS targeting the right amygdala in older adults. We found that TFUS targeting the right amygdala increased self-reported arousal in response to negative images, providing preliminary evidence that a single session of TFUS may be capable of affecting emotional reactivity.

2.
Front Neural Circuits ; 17: 1120410, 2023.
Article in English | MEDLINE | ID: mdl-37091318

ABSTRACT

Background: Low intensity, transcranial focused ultrasound (tFUS) is a re-emerging brain stimulation technique with the unique capability of reaching deep brain structures non-invasively. Objective/Hypothesis: We sought to demonstrate that tFUS can selectively and accurately target and modulate deep brain structures in humans important for emotional functioning as well as learning and memory. We hypothesized that tFUS would result in significant longitudinal changes in perfusion in the targeted brain region as well as selective modulation of BOLD activity and BOLD-based functional connectivity of the target region. Methods: In this study, we collected MRI before, simultaneously during, and after tFUS of two deep brain structures on different days in sixteen healthy adults each serving as their own control. Using longitudinal arterial spin labeling (ASL) MRI and simultaneous blood oxygen level dependent (BOLD) functional MRI, we found changes in cerebral perfusion, regional brain activity and functional connectivity specific to the targeted regions of the amygdala and entorhinal cortex (ErC). Results: tFUS selectively increased perfusion in the targeted brain region and not in the contralateral homolog or either bilateral control region. Additionally, tFUS directly affected BOLD activity in a target specific fashion without engaging auditory cortex in any analysis. Finally, tFUS resulted in selective modulation of the targeted functional network connectivity. Conclusion: We demonstrate that tFUS can selectively modulate perfusion, neural activity and connectivity in deep brain structures and connected networks. Lack of auditory cortex findings suggests that the mechanism of tFUS action is not due to auditory or acoustic startle response but rather a direct neuromodulatory process. Our findings suggest that tFUS has the potential for future application as a novel therapy in a wide range of neurological and psychiatric disorders associated with subcortical pathology.


Subject(s)
Brain Mapping , Reflex, Startle , Adult , Humans , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/methods , Perfusion
3.
Med Clin North Am ; 107(1): 73-83, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36402501

ABSTRACT

Initial studies suggested that the fluctuations in the quantity, variety, and composition of the gut microbiota can significantly affect disease processes. This change in the gut microbiota causing negative health benefits was coined dysbiosis. Initial research focused on gastrointestinal illnesses. However, the gut microbiome was found to affect more than just gastrointestinal diseases. Numerous studies have proven that the gut microbiome can influence neuropsychiatric diseases such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.


Subject(s)
Gastrointestinal Microbiome , Mental Disorders , Microbiota , Humans , Anxiety , Anxiety Disorders
4.
Org Biomol Chem ; 14(5): 1742-7, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26739570

ABSTRACT

Copper(i) N-heterocyclic carbene (CuNHC) complexes are more catalytically active than traditional transition metal salts for the cyclopropenation of internal alkynylsilanes and diazoacetate compounds. A series of 1,2,3-trisubstituted and 1,2,3,3-tetrasubstituted cyclopropenylsilane compounds were isolated in good overall yields. An interesting regioselective and chemodivergent reaction pathway was also observed to furnish a tetra-substituted furan for an electron-rich donor/acceptor diazoacetate. Finally, a practical synthesis of a cyclopropenyl-containing starting material that is useful for bioorthogonal chemistry is also described.

5.
Org Biomol Chem ; 10(37): 7483-6, 2012 Oct 07.
Article in English | MEDLINE | ID: mdl-22903589

ABSTRACT

A convenient Cu(I)-catalyzed cycloaddition of electron rich internal aryl alkynes and diazoacetates was discovered for the chemoselective and regioselective synthesis of tetra-substituted furans and cyclopropenes in moderate isolated yields (18-67%), and alkyne conversion (29-73%).


Subject(s)
Acetates/chemistry , Alkynes/chemistry , Azo Compounds/chemistry , Copper/chemistry , Cyclopropanes/chemical synthesis , Furans/chemical synthesis , Catalysis , Cyclization , Cyclopropanes/chemistry , Furans/chemistry , Molecular Structure , Organometallic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL