Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1583: 132-40, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25108041

ABSTRACT

Angiotensin II (Ang II) stimulates water and saline intakes when injected into the brain of rats. This arises from activation of the AT1 Ang II receptor subtype. Acute repeated injections, however, decrease the water intake response to Ang II without affecting saline intake. Previous studies provide evidence that Ang II-induced water intake is mediated via the classical G protein coupling pathway, whereas the saline intake caused by Ang II is mediated by an ERK 1/2 MAP kinase signaling pathway. Accordingly, the different behavioral response to repeated injections of Ang II may reflect a selective effect on G protein coupling. To test this hypothesis, we examined the binding of a radiolabeled agonist ((125)I-sarcosine(1) Ang II) and a radiolabeled antagonist ((125)I-sarcosine(1), isoleucine(8) Ang II) in brain homogenates and tissue sections prepared from rats given repeated injections of Ang II or vehicle. Although no treatment-related differences were found in hypothalamic homogenates, a focus on specific brain structures using receptor autoradiography, found that the desensitization treatment reduced binding of both radioligands in the paraventricular nucleus of the hypothalamus (PVN) and median preoptic nucleus (MnPO), but not in the subfornical organ (SFO). Because G protein coupling is reported to have a selective effect on agonist binding without affecting antagonist binding, these findings do not support a G protein uncoupling treatment effect. This suggests that receptor number is more critical to the water intake response than the saline intake response, or that pathways downstream from the G protein mediate desensitization of the water intake response.


Subject(s)
Angiotensin II/pharmacology , Central Nervous System Agents/pharmacology , Paraventricular Hypothalamic Nucleus/drug effects , Preoptic Area/drug effects , 1-Sarcosine-8-Isoleucine Angiotensin II/metabolism , Angiotensin II/administration & dosage , Angiotensin II/analogs & derivatives , Angiotensin II/metabolism , Angiotensin II Type 1 Receptor Blockers/metabolism , Angiotensin II Type 2 Receptor Blockers/metabolism , Animals , Drinking/drug effects , Drinking/physiology , Drinking Water/administration & dosage , Iodine Radioisotopes , Male , Paraventricular Hypothalamic Nucleus/metabolism , Preoptic Area/physiopathology , Radioligand Assay , Radiopharmaceuticals , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 2/agonists , Receptor, Angiotensin, Type 2/metabolism , Sodium Chloride, Dietary/administration & dosage , Subfornical Organ/drug effects , Subfornical Organ/metabolism
2.
PLoS One ; 9(8): e105762, 2014.
Article in English | MEDLINE | ID: mdl-25147932

ABSTRACT

The recent identification of a novel binding site for angiotensin (Ang) II as the peptidase neurolysin (E.C. 3.4.24.16) has implications for the renin-angiotensin system (RAS). This report describes the distribution of specific binding of 125I-Sarcosine1, Isoleucine8 Ang II (125I-SI Ang II) in neurolysin knockout mouse brains compared to wild-type mouse brains using quantitative receptor autoradiography. In the presence of p-chloromercuribenzoic acid (PCMB), which unmasks the novel binding site, widespread distribution of specific (3 µM Ang II displaceable) 125I-SI Ang II binding in 32 mouse brain regions was observed. Highest levels of binding >700 fmol/g initial wet weight were seen in hypothalamic, thalamic and septal regions, while the lowest level of binding <300 fmol/g initial wet weight was in the mediolateral medulla. 125I-SI Ang II binding was substantially higher by an average of 85% in wild-type mouse brains compared to neurolysin knockout brains, suggesting the presence of an additional non-AT1, non-AT2, non-neurolysin Ang II binding site in the mouse brain. Binding of 125I-SI Ang II to neurolysin in the presence of PCMB was highest in hypothalamic and ventral cortical brain regions, but broadly distributed across all regions surveyed. Non-AT1, non-AT2, non-neurolysin binding was also highest in the hypothalamus but had a different distribution than neurolysin. There was a significant reduction in AT2 receptor binding in the neurolysin knockout brain and a trend towards decreased AT1 receptor binding. In the neurolysin knockout brains, the size of the lateral ventricles was increased by 56% and the size of the mid forebrain (-2.72 to +1.48 relative to Bregma) was increased by 12%. These results confirm the identity of neurolysin as a novel Ang II binding site, suggesting that neurolysin may play a significant role in opposing the pathophysiological actions of the brain RAS and influencing brain morphology.


Subject(s)
Angiotensin II , Metalloendopeptidases/metabolism , Prosencephalon/metabolism , Renin-Angiotensin System/physiology , Sarcosine , Angiotensin II/pharmacokinetics , Angiotensin II/pharmacology , Animals , Iodine Isotopes/pharmacokinetics , Iodine Isotopes/pharmacology , Metalloendopeptidases/genetics , Mice , Mice, Knockout , Receptor, Angiotensin, Type 2/genetics , Receptor, Angiotensin, Type 2/metabolism , Sarcosine/pharmacokinetics , Sarcosine/pharmacology
3.
Endocrine ; 44(2): 525-31, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23412923

ABSTRACT

The discovery of a novel non-AT1, non-AT2 binding site for angiotensins in the rodent brain and testis that is unmasked by the organomercurial compound para-chloromercuribenzoic acid (PCMB) has catalyzed efforts to purify and characterize this protein. We recently reported that this protein is neurolysin and now report upon the specificity of this binding site for various neuropeptides. Competition binding assays in rat brain and testis used (125)I-Sar(1), Ile(8) angiotensin II (Ang II) as the radioligand in the presence of saturating concentrations of AT1 and AT2 receptor antagonists and 100 µM parachloromercuribenzoate. Primary screening of 36 peptides and other compounds at 10 µM concentration revealed seven peptides that inhibited specific binding >50 %: ghrelin, Tyr(1) S36057 (a melanin-concentrating hormone receptor ligand), orphanin FQ and its congeners (Tyr(1) and Tyr(14)), Dynorphin A (1-8), and Ang (1-9). The selective neurolysin inhibitor Proline-Isoleucine dipeptide was inactive at 1 mM. These results suggest that the ability of PCMB to unmask high affinity binding of Ang II to neurolysin is a pharmacological effect and that neurolysin may significantly affect the activity of the renin-angiotensin system.


Subject(s)
Angiotensin II/metabolism , Metalloendopeptidases/metabolism , p-Chloromercuribenzoic Acid/pharmacology , Animals , Binding Sites/drug effects , Binding, Competitive/drug effects , Brain/drug effects , Brain/metabolism , Male , Metalloendopeptidases/chemistry , Metalloendopeptidases/isolation & purification , Peptide Library , Protein Binding/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Angiotensin/metabolism , Testis/drug effects , Testis/metabolism , p-Chloromercuribenzoic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...