Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Environ Monit Assess ; 196(6): 513, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709416

ABSTRACT

Anthropogenic pollution impacts human and environmental health, climate change, and air quality. Karabük, an industrial area from the Black Sea Region in northern Türkiye, is vulnerable to environmental pollution, particularly soil and air. In this research on methodological aspects, we analyzed the concentrations of six potential toxic metals in the atmospheric deposition of the city using the passive method of moss biomonitoring. The ground-growing terrestrial moss, Hypnum cupressiforme Hedw., was collected during the dry season of August 2023 at 20 urban points. The concentrations of Cr, Cu, Cd, Ni, Pb, and Co were determined in mosses by the ICP-MS method. Descriptive statistical analysis was employed to evaluate the status and variance in the spatial distribution of the studied metals, and multivariate analysis, Pearson correlation, and cluster analysis were used to investigate the associations of elements and discuss the most probable sources of these elements in the study area. Cd and Co showed positive and significant inter-element correlations (r > 0.938), representing an anthropogenic association mostly present in the air particles emitted from several metal plants. The results showed substantial impacts from local industry, manufactured activity, and soil dust emissions. Steel and iron smelter plants and cement factories are the biggest emitters of trace metals in the Karabük area and the primary sources of Cr, Cd, Ni, and Co deposition.


Subject(s)
Air Pollutants , Environmental Monitoring , Metals, Heavy , Air Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Biological Monitoring/methods , Cities , Bryophyta/chemistry , Industry , Air Pollution/statistics & numerical data , Turkey
2.
Article in English | MEDLINE | ID: mdl-38802616

ABSTRACT

Classical monitoring of air pollution provides information on environmental quality but involves high costs. An alternative to this method is the use of bioindicators. The purpose of our work was to evaluate atmospheric aerosol pollution by selected polycyclic aromatic hydrocarbons conducted as part of annual active biomonitoring ("moss-bag" technique) with the use of three moss species: Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum. The gas chromatography-mass spectrometry (GC-MS) was utilized to determine certain 13 polycyclic aromatic hydrocarbons (PAHs). Three seasonal variations in PAH concentrations have been observed as a result of the study. A fire on the toilet paper plant caused an increase of five new compounds: benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), indeno(1.2.3)-cd_pyrene (IP), dibenzo(a.h)anthracene (Dah), and benzo(g.h.i)perylene (Bghi) in proximity after 8 months of exposure compared to previous months. The effect of meteorological conditions on the deposition of PAHs (mainly wind direction) in mosses was confirmed by principal component analysis (PCA). Dicranum polysetum moss accumulated on average 26.5% more PAHs than the other species, which allows considering its broader use in active biomonitoring. The "moss-bag" technique demonstrates its feasibility in assessing the source of PAH air pollution in a long-term study. It is recommended to use this biological method as a valuable tool in air quality monitoring.

3.
J Trace Elem Med Biol ; 84: 127463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657336

ABSTRACT

BACKGROUND: Environmental pollution by cadmium (Cd) is currently a common problem in many countries, especially in highly industrialised areas. Cd present in the soil can be absorbed by plants through the root system. AIM: The aim of the present study was to investigate the effects of cadmium on the metabolic activity of cucumber plants (Cucumis sativus L.) and the accumulation and distribution of Cd in the organs of the plants. METHODS: Cucumber seeds (3 g) were exposed to 0.76, 1.58 or 4.17 mg Cd/L (applied as CdCl2 solutions). The activity of selected antioxidant enzymes - glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation and the content of photosynthetic pigments were determined in 6-week-old cucumber plants. In addition, intake of Cd has been determined by flame atomic absorption spectrometry (F-AAS). RESULTS: The results show that the applied cadmium concentrations affected the activity of antioxidant enzymes. An increase in CAT activity and a decrease in SOD activity were observed in all cucumber organs analysed. GSH-Px activity increased in the roots and stems. Surprisingly, GSH-Px activity decreased in the leaves. The level of lipid peroxidation was usually unchanged (the only one statistically significant change was a decrease in the concentration of malondialdehyde in the leaves which was observed after exposure to the highest Cd concentration). The applied Cd concentrations had no effect on the content of photosynthetic pigments. The highest cadmium content was found in the roots of cucumber plants. Cd tends to accumulate in the roots and a small amount was translocated to the stems and leaves, which was confirmed with the translocation factor (TF). CONCLUSIONS: The results indicate that the range of cadmium concentrations used, corresponding to the level of environmental pollution recorded in Europe, effectively activates the antioxidant enzyme system, without intensifying lipid peroxidation or reducing the content of photosynthetic pigments.


Subject(s)
Cadmium , Cucumis sativus , Oxidative Stress , Photosynthesis , Cucumis sativus/drug effects , Cucumis sativus/metabolism , Oxidative Stress/drug effects , Cadmium/metabolism , Photosynthesis/drug effects , Superoxide Dismutase/metabolism , Lipid Peroxidation/drug effects , Catalase/metabolism , Glutathione Peroxidase/metabolism , Chlorophyll/metabolism , Antioxidants/metabolism
4.
Int J Phytoremediation ; 26(3): 304-313, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37537866

ABSTRACT

The present study examines the impact of pretreatment procedures on the metal concentrations in bags that are to be exposed. We examine Mn, Fe, Cu, Zn, Cd, and Pb amounts in Sphagnum fallax and Dicranum polysetum mosses using atomic absorption spectrometry. The concentration of Hg was also determined using a mercury analyzer. Two sample preparation ways were tested (with and without rinsing) and their influence was evaluated by determining the coefficient of variation (CV). Chlorophyll content was also determined in mosses collected from three habitats (deep woodland, forest road, and wood lot). The results indicate, that the concentration of elements deposited in mosses depends on the species and the habitat where they were collected (ANOVA, p < 0.001). Rinsing of mosses reduces the CV for Mn, Fe, Cu, and Zn and uniform the material prior to exposure (CV for the majority of metals <10%). Selected correlations were found for element concentrations with chlorophyll content. Photosynthetic activity of mosses decreased by about 80% during their one-month storage in the laboratory. Due to the varying concentration of metals in the collected samples, proper, and standardized preparation of mosses before exposure, they can be effectively used in active biomonitoring.


Compared to other biomonitoring work the novel approach is the simultaneous study of two moss species, the analysis of three different habitats and the tie-in of accumulated trace elements by mosses and their vitality by measuring chlorophyll content and photosynthetic activity.


Subject(s)
Air Pollutants , Bryophyta , Bryopsida , Mercury , Metals, Heavy , Metals, Heavy/analysis , Biological Monitoring , Air Pollutants/analysis , Environmental Monitoring/methods , Biodegradation, Environmental , Bryophyta/chemistry , Chlorophyll/analysis , Bryopsida/chemistry
6.
Sci Rep ; 13(1): 16500, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37779153

ABSTRACT

We have carried out studies to examine the possibility of using biosorbents: the epigeic mosses Pleurozium schreberi (Willd. ex Brid.) Mitt., and the epiphytic lichens Hypogymnia physodes (L.) Nyl. in active biomonitoring of heavy metal pollution of surface waters. The dried sea algae Palmaria palmata (L.) Weber & Mohr were used as the third biosorbent. The studies were conducted in the waters of the Turawa Reservoir, a dam reservoir with a significant level of eutrophication in south-western Poland. Incremental concentrations of Mn, Ni, Zn, Cu, Cd, and Pb were determined in the exposed samples. It was shown that a 2-h exposure period increases the concentration of some metals in the exposed samples, even by as much as several hundred percent. High increments of nickel concentrations in the algae Palmaria palmata (mean: 0.0040 mg/g, with the initial concentration of c0 < 0.0016 in the algae) were noted, with negligible increments in concentrations of this metal in mosses and lichens. In contrast, mosses and lichens accumulated relatively high amounts of Cd (mean: 0.0033 mg/g, c0 = 0.00043 mg/g) and Pb (mean: 0.0243 mg/g, c0 = 0.0103 mg/g), respectively.


Subject(s)
Bryophyta , Lichens , Metals, Heavy , Biological Monitoring , Cadmium , Ion Exchange , Lead , Environmental Monitoring , Metals, Heavy/analysis
7.
Plants (Basel) ; 12(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37836227

ABSTRACT

Pleurozium schreberi is a common and widespread species that has been the object of many studies, and its biology and ecology are well known. However, genetic studies on this species are limited or even absent. Because of the lack of any data about the genetic diversity of the moss species P. schreberi in Poland, the present paper describes the results of the studies carrying out for the first time this kind of research based on the atpB-rbcL spacer sequences of chloroplast DNA. A total of 35 specimens of P. schreberi from 19 locations in Poland were sampled. Total genomic DNA was extracted, amplified, and sequenced, and all obtained sequences were analyzed. Our findings suggest the low genetic diversity of P. schreberi in Poland. We detected four different haplotypes, shared between different populations.

8.
Environ Res ; 238(Pt 1): 117137, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37714364

ABSTRACT

The moss-bag technique has been used for many decades to monitor outdoor pollution. More recently, however, the method has been used to monitor indoor air pollution (IAP), as humans spend the majority of their time indoors. The purpose of the research conducted was to evaluate indoor air pollution using active moss biomonitoring. Pleurozium schreberi moss bags were exposed for two seasons (summer and winter), hanging over tile stoves and coal stoves. The selected elements: Al, Cu, Cd, Co, Pb, Zn, V, Ba, Cr, Fe, Mn, Sr, P, Ni, and S were determined by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and, for Hg, by a direct mercury analyzer. The study found the exposure season affected the concentrations of selected elements in 62.5% of cases, and their source was identified. The average concentrations of Co, Ba, Cr, and Sr were higher, and statistically significant, in winter, after a 12-week exposure period of the mosses, regardless of the type of heating or cooking stove owned. The higher phosphorus concentrations obtained in summer indicate physiological stress caused by unfavorable winter exposure conditions. In the future, the number of species used to assess indoor air pollution should be increased and the range of pollutants expanded, along with the identification of their sources, taking residents' lifestyles into account.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Bryophyta , Mercury , Metals, Heavy , Humans , Air Pollutants/analysis , Environmental Monitoring/methods , Bryophyta/chemistry , Air Pollution, Indoor/analysis , Environmental Pollution , Metals, Heavy/analysis
9.
Biology (Basel) ; 11(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36552202

ABSTRACT

The interrelationship between metal concentrations in mosses and their surroundings prompts research toward examining their accumulation properties, as it is particularly important for their usage in biomonitoring studies that use mosses. In this study, the kinetics of elemental sorption in three moss species (Pleurozium schreberi, Dicranum polysetum, and Sphagnum fallax) were investigated under laboratory conditions. Sorption from metal salt solutions was carried out under static conditions with decreasing elemental concentration. Functional groups responsible for binding metal cations to the internal structures of the mosses were also identified. It was shown that the equilibrium state was reached after about 60 min. Under the conditions of the experiment, in the first 10 min of the process, about 70.4-95.3% of metal ions were sorbed from the solution into the moss gametophytes by P. schreberi (57.1-89.0% by D. polysetum and 54.1-84.5% by S. fallax) with respect to the concentration of this analyte accumulated in the mosses at equilibrium. It can be assumed that the exposure of mosses with little contamination by heavy metals in an urbanized area under active biomonitoring will cause an increase in the concentration of these analytes in proportion to their concentration in atmospheric aerosols. In the case of P. schreberi and D. polysetum, the O-H/N-H band was enormously affected by the adsorption process. On the other hand, FTIR (Fourier transform infrared spectroscopy) analysis of S. fallax after adsorption showed slight changes for most of the bands analyzed. Based on this study, it can be concluded that mosses can be used as, for example, a biomonitor in monitoring of urban ecosystems, but also in the phytoremediation of surface waters.

10.
J Environ Health Sci Eng ; 20(1): 485-493, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35669820

ABSTRACT

This research was carried out to assess the possibility of using Pleurozium schreberi mosses as bioindicators of atmospheric aerosol pollution in living quarters (kitchen and bedroom), with metals originating from tobacco smoke from various types of cigarettes: conventional cigarettes, e-cigarettes and heated tobacco products. The moss-bag method of active biomonitoring was used. The mosses were exposed in these indoor spaces for three months and, after the exposition period, their analytes - Ni, Cu, Zn, Cd and Pb - were determined using flame atomic absorption spectrometry (F-AAS). Results were interpreted using the relative accumulation factors (RAF), coefficients of variation (CV) and the Wilcoxon test. As a result of the research, it was found that there were statistically significant differences in Zn and Cd concentrations in tobacco smoke from different types of cigarettes. The analyses showed that heated tobacco products contaminate indoor air with metals, similar to conventional cigarettes and e-cigarettes. It was demonstrated that the reliability of biomonitoring results was affected, for example, by the method of preparation of bioindicator samples, such as mosses.

11.
Article in English | MEDLINE | ID: mdl-35457569

ABSTRACT

Recently, significant attention has been paid to air quality awareness and its impact on human health, especially in urban agglomerations. Many types of dust samplers for air quality monitoring are used by governmental environmental monitoring agencies. However, these techniques are associated with high costs; as a consequence, biological methods such as active moss biomonitoring are being developed. The main disadvantages of such techniques are the lack of standardization of the preparation procedures and the lack of reliable comparisons of results with data from instrumental analyses. Our study aimed to compare the results obtained from active biomonitoring with the use of three moss species: Pleurozium schreberi, Sphagnum fallax and Dicranum polysetum. Samples were exposed via the moss-bag technique to measure the concentrations of analytes (Mn, Fe, Cu, Zn, Cd, Hg and Pb) which had accumulated among the total suspended particulates (TSP) collected from the filters of a dust collector in the city of Opole (Opole voivodeship, Poland). With regard to the physicochemical and biological traits of the mosses, their assessed lifetime and actual photochemical efficiency (yield) following exposure were meagre, which may have been related to the change of environment and their exposure to pollutants. When comparing the results obtained by the two methods used to monitor air pollution, the biomonitoring method was found to be incompletely consistent with the reference method. Biological monitoring using mosses must be carefully considered depending on the monitoring objectives, the required level of sensitivity and quality of measurement and the type of pollutant.


Subject(s)
Air Filters , Air Pollutants , Bryophyta , Bryopsida , Environmental Pollutants , Metals, Heavy , Air Pollutants/analysis , Biological Monitoring , Dust/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Humans , Metals, Heavy/analysis
12.
Environ Toxicol Chem ; 41(6): 1429-1438, 2022 06.
Article in English | MEDLINE | ID: mdl-35213067

ABSTRACT

The most widespread and used technique is the moss-bag method in active biomonitoring of air pollution using mosses. In the literature, we can find various studies on the standardization of this method, including attempts to standardize treatments and preparation procedures for their universal application. Few works comprehensively focus on other methods or compare other techniques used in active biomonitoring with mosses, especially including measurements of their vital parameters. Our experiment aimed to assess air pollution by selected heavy metals (Cu, Zn, Cd, Pb, Mn, Fe, and Hg) using three moss species (Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum) during a 12-week exposure in an urban area. Mosses were exposed simultaneously using four techniques: moss bag in three variants (exposed to air for total deposition of heavy metals, exposed to air for only dry deposition, and sheltered from the wind) and transplants in boxes. Increases in heavy metal concentrations in mosses were determined using the relative accumulation factor (RAF). The actual quantum yield of photosystem II photochemical was also analyzed as the main vitality parameter. The results indicate that all moss species during the changing environmental conditions survived and retained their vitality, although it decreased by >50% during the exposure. The best biomonitor was the moss P. schreberi, whose RAF increments were the highest throughout the study period for the majority of elements. The moss-bag technique had a statistically significant effect (almost 40%) on the concentration value of a given metal for a certain species, and thus it is the most recommended technique that can be applied in air quality monitoring in urban areas. Environ Toxicol Chem 2022;41:1429-1438. © 2022 SETAC.


Subject(s)
Air Pollutants , Bryophyta , Bryopsida , Metals, Heavy , Aerosols , Air Pollutants/analysis , Biological Monitoring , Environmental Monitoring/methods , Metals, Heavy/analysis
13.
Molecules ; 26(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885844

ABSTRACT

The use of biological indicators of environmental quality is an alternative method of monitoring ecosystem pollution. Various groups of contaminants, including organic ones, can be measured in environmental samples. Polycyclic aromatic hydrocarbons (PAHs) have not yet been determined by the moss bag technique. This technique uses several moss species simultaneously in urban areas to select the best biomonitoring of these compounds, which are dangerous to humans and the environment. In this research, a gas chromatography coupled with mass spectrometry was used for the determination of selected PAHs in three species of mosses: Pleurozium schreberi, Sphagnum fallax and Dicranum polysetum (active biomonitoring) and for comparison using an air filter reference method for atmospheric aerosol monitoring. The chlorophyll fluorescence of photosystem II (PSII) was also measured to assess changes in moss viability during the study. As a result of the study, the selective accumulation of selected PAHs by mosses was found, with Pleurozium schreberi being the best bioindicator-9 out of 13 PAHs compounds were determined in this species. The photosynthetic yield of photosystem (II) decreased by 81% during the exposure time. The relationship between PAHs concentrations in mosses and the total suspended particles (TSP) on the filter indicated the possibility of using this bioindicator to trace PAHs in urban areas and to apply the moss bag technique as a method supporting classical instrumental air monitoring.


Subject(s)
Aerosols/analysis , Atmosphere/chemistry , Biological Monitoring , Bryophyta/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Air Pollutants/analysis , Cluster Analysis , Filtration
14.
Plants (Basel) ; 10(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34834752

ABSTRACT

Biomonitoring was proposed to assess the condition of living organisms or entire ecosystems with the use of bioindicators-species sensitive to specific pollutants. It is important that the bioindicator species remains alive for as long as possible while retaining the ability to react to the negative effects of pollution (elimination/neutralization of hazardous contaminants). The purpose of the study was to assess the survival of Pleurozium schreberi moss during exposure (moss-bag technique) based on the measurement of the concentration of elements (Ni, Cu, Zn, Cd, and Pb), chlorophyll content, and its fluorescence. The study was carried out using a CCM-300 portable chlorophyll content meter, portable fluorometer, UV-Vis spectrophotometer, and a flame atomic absorption spectrometer. As a result of the laboratory tests, no significant differences were found in the chlorophyll content in the gametophytes of mosses tested immediately after collection from the forest, compared to those drying at room temperature in the laboratory (p = 0.175 for Student's t-test results). Mosses exposed using the moss-bag technique of active biomonitoring were characterized by a drop in the chlorophyll content over 12 weeks (more than 50% and 60% for chlorophyll-a and chlorophyll-b, respectively). Chlorophyll content in mosses during exposure was correlated with actual photochemical efficiency (yield) of photosystem II (calculated value of Pearson's linear correlation coefficient was 0.94-there was a significant correlation between chlorophyll a and yield p = 0.02). The highest metal increases in mosses (RAF values) were observed for zinc, lead, and copper after the second and third month of exposure. The article demonstrates that the moss exposed in an urbanized area for a period of three months maintains the properties of good bioindicator of environmental quality.

15.
Environ Sci Pollut Res Int ; 28(8): 10068-10076, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33161519

ABSTRACT

Active biomonitoring is used to assess environmental pollution of elements such as heavy metals by indicator species such as mosses. They are used, among others, in urbanized areas where no indicator species are found. In such study areas, mosses collected from sites considered to be ecologically clean shall be exposed. In this context, it is very important to prepare the mosses properly before the exposure, so that the information received about the condition of the environment is reliable. In 2018, studies were conducted in the forested areas of southern Poland-in Opolskie Province. Pleurozium schreberi mosses were used in these studies. Atomic absorption spectrometry with flame atomiser (F-AAS) was used to determine the concentrations of Mn, Fe, Ni, Cu, Zn and Pb present. The aim was to study the influence of preparation methodology on Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Four different methodologies were tested across four different sample locations (with varying levels of pollution). The results of the research were analysed and the coefficient of variation (CV) was determined. The value of the CV is influenced, among other things, by the location of the particular sample and the level of pollution by, for example heavy metals, in the moss. The research conducted proves that of the four methods used to prepare mosses for later exposure in active biomonitoring, the best method is averaging with simultaneous conditioning of mosses in demineralised water. This treatment causes the CV coefficient to fall below 10% for most of the metals determined in the moss samples. It has also been shown that maintaining moss collection methodology in accordance with ICP Vegetation standards (open/wooded area-tree canopy) also has a significant impact on the result obtained. Statistical analysis confirmed (Wilcoxon test) that the method of processing the mosses significantly influenced the results obtained. Thanks to the appropriate preparation of the mosses before exposition, they can be used in active biomonitoring of, for example, urban areas.


Subject(s)
Air Pollutants , Bryophyta , Bryopsida , Metals, Heavy , Air Pollutants/analysis , Biological Monitoring , Environmental Monitoring , Metals, Heavy/analysis , Poland
16.
Environ Sci Pollut Res Int ; 27(18): 22235-22250, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32329001

ABSTRACT

This article presents a bibliometric study of 200 European publications released between 2001 and 2016, about the contamination of mushrooms by selected elements. The analysis includes figures on the type of analyte, its concentration, the species of fungi, and its country of origin. In the literature review, 492 species of mushrooms (wild-growing and cultured) found in 26 European countries and their concentration of 74 associated elements were analysed. The papers, which dealt mainly with the heavy metal (Cd, Cu, Fe, Pb, and Zn) concentrations of mushrooms, primarily came from Turkey, Poland, Spain, and the Czech Republic. More than 50% of the publications provided data about edible mushrooms. The results of the bibliometric analysis showed that over the 16 years, European research on fungal contamination by selected analytes has not lessened in popularity and is ongoing. Many of the studies underlined the need to assess the risk to human health arising from the consumption of contaminated mushrooms taken from various habitats. These results were the effect of, among other things, the strong interest in studies carried out on edible species, in which concentrations of mainly heavy metals that are dangerous to health and are marked were indicated (Cd, Pb, and Hg).


Subject(s)
Agaricales , Metals, Heavy/analysis , Soil Pollutants/analysis , Bibliometrics , Czech Republic , Environmental Monitoring , Europe , Humans , Poland , Spain , Turkey
17.
Sci Total Environ ; 627: 438-449, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426166

ABSTRACT

In the years 2014-2016 biomonitoring studies were conducted in the forest areas of south and north-eastern Poland: the Karkonosze Mountains, the Beskidy Mountains, the Borecka Forest, the Knyszynska Forest and the Bialowieska Forest. This study used epigeic moss Pleurozium schreberi and epiphytic lichens Hypogymnia physodes. Samples were collected in spring, summer and autumn. Approximately 500 samples of moss and lichens were collected for the study. In the samples, Mn, Ni, Cu, Zn, Cd, Hg and Pb concentrations were determined. Based on the obtained results, the studied areas were ranked by extent of heavy-metal deposition: Beskidy > Karkonosze Mountains > forests of north-eastern Poland. Some seasonal changes in concentrations of metals accumulated in moss and lichens were also indicated. There was observed, i.a., an increase in Cd concentration at the beginning of the growing season, which may be related to low emissions during the heating season. Analysis of the surface distribution of deposition of metals in the studied areas showed a significant contribution of nearby territorial emissions and unidentified local emission sources. The contribution of distant emission to Zn, Hg and Pb deposition levels in the Karkonosze and Beskidy region was also indicated.


Subject(s)
Air Pollutants/analysis , Bryophyta/chemistry , Environmental Monitoring/methods , Lichens/chemistry , Metals, Heavy/analysis , Forests , Poland
SELECTION OF CITATIONS
SEARCH DETAIL
...