Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vet World ; 16(8): 1647-1654, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37766707

ABSTRACT

Background and Aim: Enhancing the nutritional and biological value of meat obtained from young surplus replacement animals of dual-purpose breeds is a critical objective in the livestock industry. This study aimed to investigate the impact of thyroglobulin (TG5, c. -422C > T) and leptin (LEP, c. 239C > T) polymorphisms on the productivity, chemical composition, and fatty acid (FA) profile of meat from Simmental bulls. Materials and Methods: A total of 26 Simmental bulls were genotyped for TG5 (c. -422C > T) and LEP (c. 239C > T) polymorphisms and reared under the same fattening conditions. Controlled slaughter was conducted at 18 months of age. Subsequently, the experimental animals were evaluated to determine their slaughter traits and the chemical and FA composition of ground beef and the longissimus dorsi muscle. Results: The results showed that the TG5 (c. -422C > T) polymorphism significantly (p < 0.05) affected the differentiation of bulls in terms of the synthesis of stearic acid, linolenic acid, and total polyunsaturated FAs, as well as the fat and dry matter content in the longissimus dorsi muscle. Conversely, the presence of the T allele in the LEP (c. 239C > T) polymorphism was associated with increased dry matter and fat in ground beef, carcass weight, and internal fat weight. Conclusion: The analysis of slaughter traits and the chemical and FA composition of meat from the Simmental bulls genotyped for the TG5 and LEP genes revealed a genetic basis for the quantitative and qualitative characteristics of meat productivity. Thus, the genetic variability of bulls regarding the LEP and TG5 genes can be used to improve the quantitative and qualitative indicators of meat productivity in Simmental cattle through marker-assisted selection.

2.
Nucleic Acids Res ; 51(D1): D942-D949, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36420896

ABSTRACT

GENCODE produces high quality gene and transcript annotation for the human and mouse genomes. All GENCODE annotation is supported by experimental data and serves as a reference for genome biology and clinical genomics. The GENCODE consortium generates targeted experimental data, develops bioinformatic tools and carries out analyses that, along with externally produced data and methods, support the identification and annotation of transcript structures and the determination of their function. Here, we present an update on the annotation of human and mouse genes, including developments in the tools, data, analyses and major collaborations which underpin this progress. For example, we report the creation of a set of non-canonical ORFs identified in GENCODE transcripts, the LRGASP collaboration to assess the use of long transcriptomic data to build transcript models, the progress in collaborations with RefSeq and UniProt to increase convergence in the annotation of human and mouse protein-coding genes, the propagation of GENCODE across the human pan-genome and the development of new tools to support annotation of regulatory features by GENCODE. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Subject(s)
Computational Biology , Genome, Human , Humans , Animals , Mice , Molecular Sequence Annotation , Computational Biology/methods , Genome, Human/genetics , Transcriptome/genetics , Gene Expression Profiling , Databases, Genetic
3.
Nucleic Acids Res ; 49(D1): D916-D923, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33270111

ABSTRACT

The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Subject(s)
COVID-19/prevention & control , Computational Biology/methods , Databases, Genetic , Genomics/methods , Molecular Sequence Annotation/methods , SARS-CoV-2/genetics , Animals , COVID-19/epidemiology , COVID-19/virology , Epidemics , Humans , Internet , Mice , Pseudogenes/genetics , RNA, Long Noncoding/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Transcription, Genetic/genetics
4.
Nucleic Acids Res ; 47(D1): D766-D773, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30357393

ABSTRACT

The accurate identification and description of the genes in the human and mouse genomes is a fundamental requirement for high quality analysis of data informing both genome biology and clinical genomics. Over the last 15 years, the GENCODE consortium has been producing reference quality gene annotations to provide this foundational resource. The GENCODE consortium includes both experimental and computational biology groups who work together to improve and extend the GENCODE gene annotation. Specifically, we generate primary data, create bioinformatics tools and provide analysis to support the work of expert manual gene annotators and automated gene annotation pipelines. In addition, manual and computational annotation workflows use any and all publicly available data and analysis, along with the research literature to identify and characterise gene loci to the highest standard. GENCODE gene annotations are accessible via the Ensembl and UCSC Genome Browsers, the Ensembl FTP site, Ensembl Biomart, Ensembl Perl and REST APIs as well as https://www.gencodegenes.org.


Subject(s)
Databases, Genetic , Genome, Human/genetics , Genomics , Pseudogenes/genetics , Animals , Computational Biology , Humans , Internet , Mice , Molecular Sequence Annotation , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...