Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chronobiol Int ; 41(3): 427-438, 2024 03.
Article in English | MEDLINE | ID: mdl-38317499

ABSTRACT

Late chronotype (LC) is related to obesity and altered food intake throughout the day. But whether appetite perception and gut hormones differ among chronotypes is unclear. Thus, we examined if early chronotype (EC) have different appetite responses in relation to food intake than LC. Adults with obesity were categorized using the Morningness-Eveningness Questionnaire (MEQ) as either EC (n = 21, 18F, MEQ = 63.9 ± 1.0, 53.7 ± 1.2 yr, 36.2 ± 1.1 kg/m2) and LC (n = 28, 24F, MEQ = 47.2 ± 1.5, 55.7 ± 1.4 yr, 37.1 ± 1.0 kg/m2). Visual analog scales were used during a 120 min 75 g oral glucose tolerance test (OGTT) at 30 min intervals to assess appetite perception, as well as glucose, insulin, GLP-1 (glucagon-like polypeptide-1), GIP (glucose-dependent insulinotrophic peptide), PYY (protein tyrosine tyrosine), and acylated ghrelin. Dietary intake (food logs), resting metabolic rate (RMR; indirect calorimetry), aerobic fitness (maximal oxygen consumption (VO2max)), and body composition dual-energy X-ray absorptiometry (DXA) were also assessed. Age, body composition, RMR, and fasting appetite were similar between groups. However, EC had higher satisfaction and fullness as well as reduced desires for sweet, salty, savory, and fatty foods during the OGTT (P <0.05). Only GIP tAUC0-120 min was elevated in EC versus LC (p = 0.01). Daily dietary intake was similar between groups, but EC ate fewer carbohydrates (p = 0.05) and more protein (p = 0.01) at lunch. Further, EC had lower caloric (p = 0.03), protein (p = 0.03) and fat (p = 0.04) intake during afternoon snacking compared to LC. Dietary fat was lower, and carbohydrates was higher, in EC than LC (p = 0.05) at dinner. Low glucose and high insulin as well as GLP-1 tAUC60-120 min related to desires for sweet foods (p < 0.05). Taken together, EC had more favorable appetite and lower caloric intake later in the day compared with LC.


Subject(s)
Appetite , Chronotype , Adult , Humans , Appetite/physiology , Circadian Rhythm , Obesity/metabolism , Insulin , Energy Intake/physiology , Ghrelin , Glucagon-Like Peptide 1 , Glucose , Carbohydrates , Tyrosine , Blood Glucose/metabolism
2.
Med Sci Sports Exerc ; 56(6): 1009-1017, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38190376

ABSTRACT

INTRODUCTION: People with obesity have high circulating bile acids (BA). Although aerobic fitness favors low circulating BA, the effect of training intensity before clinically meaningful weight loss on BA is unclear. This study aimed to test the hypothesis that 2 wk of interval (INT) versus continuous (CONT) exercise would lower plasma BA in relation to insulin sensitivity. METHODS: Twenty-three older adults with prediabetes (ADA criteria) were randomized to 12 work-matched bouts of INT ( n = 11, 60.3 ± 2.4 yr, 32.1 ± 1.2 kg·m -2 ) at 3 min at 50% HR peak and 3 min at 90% HR peak or CONT ( n = 12, 60.8 ± 2.4 yr, 34.0 ± 1.7 kg·m -2 ) at 70% HR peak cycling training for 60 min·d -1 over 2 wk. A 180-min 75-g oral glucose tolerance test (OGTT) was performed to assess glucose tolerance (tAUC), insulin sensitivity (Siis), and metabolic flexibility (RER postprandial -RER fast ; indirect calorimetry). BA ( n = 8 conjugated and 7 unconjugated) were analyzed at 0, 30, and 60 min of the OGTT. Anthropometrics and fitness (V̇O 2peak ) were also assessed. RESULTS: INT and CONT comparably reduced body mass index (BMI; P < 0.001) and fasting RER ( P < 0.001) but raised insulin sensitivity ( P = 0.03). INT increased V̇O 2peak as compared with CONT ( P = 0.01). Exercise decreased the unconjugated BA chenodeoxycholic acid iAUC 60min ( P < 0.001), deoxycholic acid iAUC 60min ( P < 0.001), lithocholic acid iAUC 60min ( P < 0.001), and glycodeoxycholic acid (GCDCA) iAUC 60min ( P < 0.001). Comparable reductions were also seen in the conjugated BA hyodeoxycholic acid iAUC 60min ( P = 0.01) and taurolithocholic acid iAUC 60min ( P = 0.007). Increased V̇O 2peak was associated with lowered UDCA 0min ( r = -0.56, P = 0.02) and cholic acid iAUC 60min ( r = -0.60, P = 0.005), whereas reduced BMI was related to higher GDCA 0min ( r = 0.60, P = 0.005) and GCDCA 0min ( r = 0.53, P = 0.01). Improved insulin sensitivity correlated with lower GCDCA iAUC 60min ( r = -0.45, P = 0.03) and GDCA iAUC 60min ( r = -0.48, P = 0.02), whereas increased metabolic flexibility was related to deoxycholic acid iAUC 60min ( r = 0.64, P = 0.004) and GCDCA iAUC 60min ( r = 0.43, P = 0.05). CONCLUSIONS: Short-term training lowers some BA in relation to insulin sensitivity independent of intensity.


Subject(s)
Bile Acids and Salts , Glucose Tolerance Test , Insulin Resistance , Prediabetic State , Humans , Prediabetic State/blood , Prediabetic State/therapy , Middle Aged , Male , Bile Acids and Salts/blood , Female , Exercise/physiology , High-Intensity Interval Training , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...