Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
2.
Commun Biol ; 6(1): 325, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973388

ABSTRACT

The accumulation and transmission of mechanical stresses in the cell cortex and membrane determines the mechanics of cell shape and coordinates essential physical behaviors, from cell polarization to cell migration. However, the extent that the membrane and cytoskeleton each contribute to the transmission of mechanical stresses to coordinate diverse behaviors is unclear. Here, we reconstitute a minimal model of the actomyosin cortex within liposomes that adheres, spreads and ultimately ruptures on a surface. During spreading, accumulated adhesion-induced (passive) stresses within the membrane drive changes in the spatial assembly of actin. By contrast, during rupture, accumulated myosin-induced (active) stresses within the cortex determine the rate of pore opening. Thus, in the same system, devoid of biochemical regulation, the membrane and cortex can each play a passive or active role in the generation and transmission of mechanical stress, and their relative roles drive diverse biomimetic physical behaviors.


Subject(s)
Actins , Biomimetics , Actins/metabolism , Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Cytoskeleton/metabolism
3.
Soft Matter ; 19(9): 1695-1704, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36779972

ABSTRACT

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.

4.
J Vis Exp ; (188)2022 10 28.
Article in English | MEDLINE | ID: mdl-36373911

ABSTRACT

Many cell movements and shape changes and certain types of intracellular bacterial and organelle motility are driven by the biopolymer actin that forms a dynamic network at the surface of the cell, organelle, or bacterium. The biochemical and mechanical basis of force production during this process can be studied by reproducing actin-based movement in an acellular manner on inert surfaces such as beads that are functionalized and incubated with a controlled set of components. Under the appropriate conditions, an elastic actin network assembles at the bead surface and breaks open due to the stress generated by network growth, forming an "actin comet" that propels the bead forward. However, such experiments require the purification of a host of different actin-binding proteins, often putting them beyond the reach of non-specialists. This article details a protocol for reproducibly obtaining actin comets and motility of beads using commercially available reagents. Bead coating, bead size, and motility mixture can be altered to observe the effect on bead speed, trajectories, and other parameters. This assay can be used for testing the biochemical activities of different actin-binding proteins, and for performing quantitative physical measurements that shed light on active matter properties of actin networks. This will be a useful tool for the community, enabling the study of in vitro actin-based motility without expert knowledge in actin-binding protein purification.


Subject(s)
Actins , Microfilament Proteins , Actins/metabolism , Microfilament Proteins/metabolism , Cell Movement
5.
J Biol Chem ; 295(45): 15366-15375, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32868296

ABSTRACT

Heterodimeric capping protein (CP) binds the rapidly growing barbed ends of actin filaments and prevents the addition (or loss) of subunits. Capping activity is generally considered to be essential for actin-based motility induced by Arp2/3 complex nucleation. By stopping barbed end growth, CP favors nucleation of daughter filaments at the functionalized surface where the Arp2/3 complex is activated, thus creating polarized network growth, which is necessary for movement. However, here using an in vitro assay where Arp2/3 complex-based actin polymerization is induced on bead surfaces in the absence of CP, we produce robust polarized actin growth and motility. This is achieved either by adding the actin polymerase Ena/VASP or by boosting Arp2/3 complex activity at the surface. Another actin polymerase, the formin FMNL2, cannot substitute for CP, showing that polymerase activity alone is not enough to override the need for CP. Interfering with the polymerase activity of Ena/VASP, its surface recruitment or its bundling activity all reduce Ena/VASP's ability to maintain polarized network growth in the absence of CP. Taken together, our findings show that CP is dispensable for polarized actin growth and motility in situations where surface-directed polymerization is favored by whatever means over the growth of barbed ends in the network.


Subject(s)
Actin Capping Proteins/metabolism , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , DNA-Binding Proteins/metabolism , Formins/metabolism , Animals , Mice , Polymerization , Rabbits , Swine
6.
J Cell Biol ; 219(10)2020 10 05.
Article in English | MEDLINE | ID: mdl-32790861

ABSTRACT

LINC complexes are transmembrane protein assemblies that physically connect the nucleoskeleton and cytoskeleton through the nuclear envelope. Dysfunctions of LINC complexes are associated with pathologies such as cancer and muscular disorders. The mechanical roles of LINC complexes are poorly understood. To address this, we used genetically encoded FRET biosensors of molecular tension in a nesprin protein of the LINC complex of fibroblastic and epithelial cells in culture. We exposed cells to mechanical, genetic, and pharmacological perturbations, mimicking a range of physiological and pathological situations. We show that nesprin experiences tension generated by the cytoskeleton and acts as a mechanical sensor of cell packing. Moreover, nesprin discriminates between inductions of partial and complete epithelial-mesenchymal transitions. We identify the implicated mechanisms, which involve α-catenin capture at the nuclear envelope by nesprin upon its relaxation, thereby regulating ß-catenin transcription. Our data thus implicate LINC complex proteins as mechanotransducers that fine-tune ß-catenin signaling in a manner dependent on the epithelial-mesenchymal transition program.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Mechanotransduction, Cellular/genetics , Multiprotein Complexes/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , beta Catenin/genetics , Animals , Biosensing Techniques , Dogs , Fluorescence Resonance Energy Transfer , Humans , Madin Darby Canine Kidney Cells , Mice , Microtubules/genetics , NIH 3T3 Cells , Nuclear Envelope/genetics , Nuclear Matrix/genetics
7.
EMBO Rep ; 21(7): e49910, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32419336

ABSTRACT

The mechanisms by which cells exert forces on their nuclei to migrate through openings smaller than the nuclear diameter remain unclear. We use CRISPR/Cas9 to fluorescently label nesprin-2 giant, which links the cytoskeleton to the nuclear interior. We demonstrate that nesprin-2 accumulates at the front of the nucleus during nuclear deformation through narrow constrictions, independently of the nuclear lamina. We find that nesprins are mobile at time scales similar to the accumulation. Using artificial constructs, we show that the actin-binding domain of nesprin-2 is necessary and sufficient for this accumulation. Actin filaments are organized in a barrel structure around the nucleus in the direction of movement. Using two-photon ablation and cytoskeleton-inhibiting drugs, we demonstrate an actomyosin-dependent pulling force on the nucleus from the front of the cell. The elastic recoil upon ablation is dampened when nesprins are reduced at the nuclear envelope. We thus show that actin redistributes nesprin-2 giant toward the front of the nucleus and contributes to pulling the nucleus through narrow constrictions, in concert with myosin.


Subject(s)
Cell Nucleus , Nuclear Proteins , Actins/genetics , Cell Movement , Nuclear Envelope , Nuclear Proteins/genetics
8.
Soft Matter ; 16(31): 7222-7230, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32435778

ABSTRACT

Finger-like protrusions in cells are mostly generated by an active actin cytoskeleton pushing against the cell membrane. Conventional filopodia, localized at the leading edge of the cells, are long and thin protrusions composed of parallel actin filaments that emanate from a branched actin network. In contrast, dendritic filopodia, precursors of dendritic spines in neurons, are entirely filled in with a branched actin network. Here, we investigate in vitro how the dynamics of branched actin structures, polymerized at a membrane surface, trigger the formation of both protrusion types. Using supported bilayers and liposomes, we show that a decrease in the amount of activation sites at the membrane surface leads to the appearance of heterogeneities in the actin network coverage. Such heterogeneities promote the formation of membrane protrusions, and the size of heterogeneity patches matches the one of the protrusion base. Protrusion shape, cylindrical or conical, directly correlates with the absence or the presence of actin branches, respectively.


Subject(s)
Actins , Pseudopodia , Actin Cytoskeleton , Neurons
9.
Soft Matter ; 15(47): 9647-9653, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31701987

ABSTRACT

Global changes of cell shape under mechanical or osmotic external stresses are mostly controlled by the mechanics of the cortical actin cytoskeleton underlying the cell membrane. Some aspects of this process can be recapitulated in vitro on reconstituted actin-and-membrane systems. In this paper, we investigate how the mechanical properties of a branched actin network shell, polymerized at the surface of a liposome, control membrane shape when the volume is reduced. We observe a variety of membrane shapes depending on the actin thickness. Thin shells undergo buckling, characterized by a cup-shape deformation of the membrane that coincides with the one of the actin network. Thick shells produce membrane wrinkles, but do not deform their outer layer. For intermediate micrometer-thick shells, wrinkling of the membrane is observed, and the actin layer is slightly deformed. Confronting our experimental results with a theoretical description, we determine the transition between buckling and wrinkling, which depends on the thickness of the actin shell and the size of the liposome. We thus unveil the generic mechanism by which biomembranes are able to accommodate their shape against mechanical compression, through thickness adaptation of their cortical cytoskeleton.


Subject(s)
Actin Cytoskeleton/chemistry , Cell Membrane , Cell Shape , Liposomes , Osmotic Pressure , Polymerization
10.
Phys Biol ; 15(6): 065004, 2018 07 30.
Article in English | MEDLINE | ID: mdl-29978835

ABSTRACT

The ability of mammalian cells to deform their membrane relies on the action of the cytoskeleton. In particular, the dynamics of the actin cytoskeleton, assembling at the plasma membrane, plays a crucial role in controlling cell shape. Many proteins are involved to ensure proper growth of the actin network at the cell membrane. The detailed structure of this network regulates the force that is necessary for membrane deformation. We address here how the presence of capping proteins, which limit the length of actin filaments and thus affects network topology, influences membrane shape. We use a system of liposomes, activated to polymerize actin at their surface, and placed in a mixture of purified proteins that reconstitutes actin dynamics. Our system also allows the variation of membrane tension by deflating the liposomes. We show that membrane deformations are clearly favored in the presence of capping proteins in the actin network. Moreover, in the absence of capping proteins, membrane deformations appear only when the liposomes are deflated. Our results unveil that the interplay between membrane tension and actin network structure and dynamics governs cell shape.


Subject(s)
Actin Cytoskeleton/physiology , Cell Membrane/physiology , Cell Shape , Animals , Biophysical Phenomena , Mice , Sus scrofa
11.
J Phys D Appl Phys ; 51(34)2018 Aug.
Article in English | MEDLINE | ID: mdl-30655651

ABSTRACT

The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo- and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area.

12.
Biophys J ; 113(5): 1072-1079, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28877490

ABSTRACT

Actin is one of the main components of the architecture of cells. Actin filaments form different polymer networks with versatile mechanical properties that depend on their spatial organization and the presence of cross-linkers. Here, we investigate the mechanical properties of actin bundles in the absence of cross-linkers. Bundles are polymerized from the surface of mDia1-coated latex beads, and deformed by manipulating both ends through attached beads held by optical tweezers, allowing us to record the applied force. Bundle properties are strikingly different from the ones of a homogeneous isotropic beam. Successive compression and extension leads to a decrease in the buckling force that we attribute to the bundle remaining slightly curved after the first deformation. Furthermore, we find that the bundle is solid, and stiff to bending, along the long axis, whereas it has a liquid and viscous behavior in the transverse direction. Interpretation of the force curves using a Maxwell visco-elastic model allows us to extract the bundle mechanical parameters and confirms that the bundle is composed of weakly coupled filaments. At short times, the bundle behaves as an elastic material, whereas at long times, filaments flow in the longitudinal direction, leading to bundle restructuring. Deviations from the model reveal a complex adaptive rheological behavior of bundles. Indeed, when allowed to anneal between phases of compression and extension, the bundle reinforces. Moreover, we find that the characteristic visco-elastic time is inversely proportional to the compression speed. Actin bundles are therefore not simple force transmitters, but instead, complex mechano-transducers that adjust their mechanics to external stimulation. In cells, where actin bundles are mechanical sensors, this property could contribute to their adaptability.


Subject(s)
Actins/metabolism , Actins/chemistry , Adaptation, Physiological , Biomechanical Phenomena , Elasticity , Models, Molecular , Optical Tweezers , Rheology , Stress, Mechanical , Viscosity
13.
Nat Commun ; 7: 10253, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26727405

ABSTRACT

Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.


Subject(s)
Actins/physiology , Oocytes/physiology , Spindle Apparatus/physiology , Animals , Fertilization in Vitro , Male , Mice , Oocytes/cytology , Spermatozoa/cytology , Spermatozoa/physiology
14.
Biophys J ; 109(12): 2471-2479, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26682806

ABSTRACT

Cell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors. Using a hydrodynamic tube-pulling technique, we show that tube dynamics is clearly affected by the presence of an actin shell anchored to the lipid bilayer. The same force pulls much shorter tubes in the presence of the actin shell compared to bare membranes. However, in both cases, we observe that the dynamics of tube extrusion has two distinct features characteristic of viscoelastic materials: rapid elastic elongation, followed by a slower elongation phase at a constant rate. We interpret the initial elastic regime by an increase of membrane tension due to the loss of lipids into the tube. Tube length is considerably shorter for cortex liposomes at comparable pulling forces, resulting in a higher spring constant. The presence of the actin shell seems to restrict lipid mobility, as is observed in the corral effect in cells. The viscous regime for bare liposomes corresponds to a leakout of the internal liquid at constant membrane tension. The presence of the actin shell leads to a larger friction coefficient. As the tube is pulled from a patchy surface, membrane tension increases locally, leading to a Marangoni flow of lipids. As a conclusion, the presence of an actin shell is revealed by its action that alters membrane mechanics.


Subject(s)
Actins/metabolism , Biomimetic Materials/metabolism , Liposomes/metabolism , Mechanical Phenomena , Biomechanical Phenomena , Capsules , Elasticity , Hydrodynamics , Viscosity
15.
Soft Matter ; 11(30): 6075-88, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26135540

ABSTRACT

Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelengths, optically induced mechanical stresses and temperature increase can be tuned fairly independently with a single setup. The phase transition temperature of vesicles can be clearly identified by an increase in deformation. In the case of no heating effects, a minimal model for drop deformation in an optical stretcher and a more specific model for vesicle deformation that takes explicitly into account the angular dependence of the optical stress are presented to account for the experimental results. Elastic constants are extracted from the fitting procedures, which agree with literature data. This study demonstrates the utility of optical stretching, which is easily combined with microfluidic delivery, for the future serial, high-throughput study of the mechanical and thermodynamic properties of phospholipid vesicles.


Subject(s)
Cell Membrane/chemistry , Microfluidics , Phospholipids/chemistry , Elasticity , Lasers , Models, Theoretical , Optics and Photonics , Temperature , Thermodynamics
16.
Methods Cell Biol ; 128: 271-85, 2015.
Article in English | MEDLINE | ID: mdl-25997352

ABSTRACT

Cells move and change shape by dynamically reorganizing their cytoskeleton next to the plasma membrane. In particular, actin assembly generates forces and stresses that deform the cell membrane. Cell-sized liposomes are designed to mimic this function. The activation of actin polymerization at their membrane is able to push the membrane forward, thus reproducing the mechanism of lamellipodium extension at the cell front. Moreover, the cell cortex, a submicrometer-thick actin shell right beneath the cell membrane can be reproduced; it contributes to cell tension with the action of molecular motors. We will describe experimental methods to prepare liposomes that mimic the inside geometry of a cell, and that reproduce actin-based propulsion of the liposome using an outside geometry. Such systems allow to study how actin-related proteins control and affect actin cortex assembly and can produce forces that drive cell shape changes.


Subject(s)
Actin Cytoskeleton/physiology , Actins/metabolism , Cell Membrane/physiology , Liposomes/chemical synthesis , Liposomes/metabolism , Cell Movement/physiology , Lipids/physiology
17.
Nature ; 517(7535): 493-6, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25517096

ABSTRACT

During endocytosis, energy is invested to narrow the necks of cargo-containing plasma membrane invaginations to radii at which the opposing segments spontaneously coalesce, thereby leading to the detachment by scission of endocytic uptake carriers. In the clathrin pathway, dynamin uses mechanical energy from GTP hydrolysis to this effect, assisted by the BIN/amphiphysin/Rvs (BAR) domain-containing protein endophilin. Clathrin-independent endocytic events are often less reliant on dynamin, and whether in these cases BAR domain proteins such as endophilin contribute to scission has remained unexplored. Here we show, in human and other mammalian cell lines, that endophilin-A2 (endoA2) specifically and functionally associates with very early uptake structures that are induced by the bacterial Shiga and cholera toxins, which are both clathrin-independent endocytic cargoes. In controlled in vitro systems, endoA2 reshapes membranes before scission. Furthermore, we demonstrate that endoA2, dynamin and actin contribute in parallel to the scission of Shiga-toxin-induced tubules. Our results establish a novel function of endoA2 in clathrin-independent endocytosis. They document that distinct scission factors operate in an additive manner, and predict that specificity within a given uptake process arises from defined combinations of universal modules. Our findings highlight a previously unnoticed link between membrane scaffolding by endoA2 and pulling-force-driven dynamic scission.


Subject(s)
Acyltransferases/metabolism , Cell Membrane/metabolism , Endocytosis , Actins/metabolism , Animals , Cell Line , Cholera Toxin/metabolism , Clathrin , Dynamins/metabolism , Humans , Rats , Shiga Toxin/metabolism
18.
Biophys J ; 107(4): 854-62, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25140420

ABSTRACT

Actin is ubiquitous globular protein that polymerizes into filaments and forms networks that participate in the force generation of eukaryotic cells. Such forces are used for cell motility, cytokinesis, and tissue remodeling. Among those actin networks, we focus on the actin cortex, a dense branched network beneath the plasma membrane that is of particular importance for the mechanical properties of the cell. Here we reproduce the cellular cortex by activating actin filament growth on a solid surface. We unveil the existence of a sparse actin network that emanates from the surface and extends over a distance that is at least 10 times larger than the cortex itself. We call this sparse actin network the "actin cloud" and characterize its mechanical properties with optical tweezers. We show, both experimentally and theoretically, that the actin cloud is mechanically relevant and that it should be taken into account because it can sustain forces as high as several picoNewtons (pN). In particular, it is known that in plant cells, actin networks similar to the actin cloud have a role in positioning the nucleus; in large oocytes, they play a role in driving chromosome movement. Recent evidence shows that such networks even prevent granule condensation in large cells.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/chemistry , Biomechanical Phenomena , Biomimetic Materials/chemistry , Elastic Modulus , Models, Biological , Nonlinear Dynamics , Optical Tweezers , Polystyrenes/chemistry
19.
Physiol Rev ; 94(1): 235-63, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24382887

ABSTRACT

Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Movement , Animals , Cell Movement/physiology , Humans , Morphogenesis/physiology , Tight Junctions/metabolism
20.
Philos Trans R Soc Lond B Biol Sci ; 368(1629): 20130005, 2013.
Article in English | MEDLINE | ID: mdl-24062578

ABSTRACT

Cells use complex biochemical pathways to drive shape changes for polarization and movement. One of these pathways is the self-assembly of actin filaments and myosin motors that together produce the forces and tensions that drive cell shape changes. Whereas the role of actin and myosin motors in cell polarization is clear, the exact mechanism of how the cortex, a thin shell of actin that is underneath the plasma membrane, can drive cell shape changes is still an open question. Here, we address this issue using biomimetic systems: the actin cortex is reconstituted on liposome membranes, in an 'outside geometry'. The actin shell is either grown from an activator of actin polymerization immobilized at the membrane by a biotin-streptavidin link, or built by simple adsorption of biotinylated actin filaments to the membrane, in the presence or absence of myosin motors. We show that tension in the actin network can be induced either by active actin polymerization on the membrane via the Arp2/3 complex or by myosin II filament pulling activity. Symmetry breaking and spontaneous polarization occur above a critical tension that opens up a crack in the actin shell. We show that this critical tension is reached by growing branched networks, nucleated by the Arp2/3 complex, in a concentration window of capping protein that limits actin filament growth and by a sufficient number of motors that pull on actin filaments. Our study provides the groundwork to understanding the physical mechanisms at work during polarization prior to cell shape modifications.


Subject(s)
Actins/metabolism , Cell Movement/physiology , Cell Polarity/physiology , Cell Shape/physiology , Models, Biological , Myosin Type II/metabolism , Polymerization , Actin-Related Protein 2-3 Complex/metabolism , Biomechanical Phenomena/physiology , Biomimetics , Biotin , Humans , Liposomes/metabolism , Profilins/metabolism , Streptavidin
SELECTION OF CITATIONS
SEARCH DETAIL
...