Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1637, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347148

ABSTRACT

Carbohydrates, proteins and lipids are essential nutrients to all animals; however, closely related species, populations, and individuals can display dramatic variation in diet. Here we explore the variation in macronutrient tolerance in Drosophila melanogaster using the Drosophila genetic reference panel, a collection of ~200 strains derived from a single natural population. Our study demonstrates that D. melanogaster, often considered a "dietary generalist", displays marked genetic variation in survival on different diets, notably on high-sugar diet. Our genetic analysis and functional validation identify several regulators of macronutrient tolerance, including CG10960/GLUT8, Pkn and Eip75B. We also demonstrate a role for the JNK pathway in sugar tolerance and de novo lipogenesis. Finally, we report a role for tailless, a conserved orphan nuclear hormone receptor, in regulating sugar metabolism via insulin-like peptide secretion and sugar-responsive CCHamide-2 expression. Our study provides support for the use of nutrigenomics in the development of personalized nutrition.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Genetic Variation , Nutrients , Sugars/metabolism , Transcription Factors/metabolism
2.
Acta Physiol (Oxf) ; 202(3): 323-35, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21352505

ABSTRACT

Exercise counteracts insulin resistance and improves glucose homeostasis in many ways. Apart from increasing muscle glucose uptake quickly, exercise also clearly increases muscle insulin sensitivity in the post-exercise period. This review will focus on the mechanisms responsible for this increased insulin sensitivity. It is believed that increased sarcolemmal content of the glucose transporter GLUT4 can explain the phenomenon to some extent. Surprisingly no improvement in the proximal insulin signalling pathway is observed at the level of the insulin receptor, IRS1, PI3K or Akt. Recently more distal signalling component in the insulin signalling pathway such as aPKC, Rac1, TBC1D4 and TBC1D1 have been described. These are all affected by both insulin and exercise which means that they are likely converging points in promoting GLUT4 translocation and therefore possible candidates for regulating insulin sensitivity after exercise. Whereas TBC1D1 does not appear to regulate insulin sensitivity after exercise, correlative evidence in contrast suggests TBC1D4 to be a relevant candidate. Little is known about aPKC and Rac1 in relation to insulin sensitivity after exercise. Besides mechanisms involved in signalling to GLUT4 translocation, factors influencing the trans-sarcolemmal glucose concentration gradient might also be important. With regard to the interstitial glucose concentration microvascular perfusion is particular relevant as correlative evidence supports a connection between insulin sensitivity and microvascular perfusion. Thus, there are new candidates at several levels which collectively might explain the phenomenon.


Subject(s)
Exercise/physiology , Insulin Resistance/physiology , Insulin/metabolism , Physical Conditioning, Animal/physiology , Animals , Energy Metabolism , GTPase-Activating Proteins/metabolism , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Humans , Muscle, Skeletal/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...