Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Med Genet ; 60(10): 1026-1034, 2023 10.
Article in English | MEDLINE | ID: mdl-37197783

ABSTRACT

BACKGROUND: RNA polymerase III-related or 4H leukodystrophy (POLR3-HLD) is an autosomal recessive hypomyelinating leukodystrophy characterized by neurological dysfunction, hypodontia and hypogonadotropic hypogonadism. The disease is caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C or POLR3K. Craniofacial abnormalities reminiscent of Treacher Collins syndrome have been originally described in patients with POLR3-HLD caused by biallelic pathogenic variants in POLR1C. To date, no published studies have appraised in detail the craniofacial features of patients with POLR3-HLD. In this work, the specific craniofacial characteristics of patients with POLR3-HLD associated with biallelic pathogenic variants in POLR3A, POLR3B and POLR1C are described. METHODS: The craniofacial features of 31 patients with POLR3-HLD were evaluated, and potential genotype-phenotype associations were evaluated. RESULTS: Various craniofacial abnormalities were recognized in this patient cohort, with each individual presenting at least one craniofacial abnormality. The most frequently identified features included a flat midface (61.3%), a smooth philtrum (58.0%) and a pointed chin (51.6%). In patients with POLR3B biallelic variants, a thin upper lip was frequent. Craniofacial anomalies involving the forehead were most commonly associated with biallelic variants in POLR3A and POLR3B while a higher proportion of patients with POLR1C biallelic variants demonstrated bitemporal narrowing. CONCLUSION: Through this study, we demonstrated that craniofacial abnormalities are common in patients with POLR3-HLD. This report describes in detail the dysmorphic features of POLR3-HLD associated with biallelic variants in POLR3A, POLR3B and POLR1C.


Subject(s)
Demyelinating Diseases , Neurodegenerative Diseases , Humans , RNA Polymerase III/genetics , Inheritance Patterns , DNA-Directed RNA Polymerases/genetics
2.
Front Neurol ; 14: 1148377, 2023.
Article in English | MEDLINE | ID: mdl-37077564

ABSTRACT

Introduction: Rare neurodevelopmental disorders, including inherited white matter disorders or leukodystrophies, often present a diagnostic challenge on a genetic level given the large number of causal genes associated with a range of disease subtypes. This study aims to demonstrate the challenges and lessons learned in the genetic investigations of leukodystrophies through presentation of a series of cases solved using exome or genome sequencing. Methods: Each of the six patients had a leukodystrophy associated with hypomyelination or delayed myelination on MRI, and inconclusive clinical diagnostic genetic testing results. We performed next generation sequencing (case-based exome or genome sequencing) to further investigate the genetic cause of disease. Results: Following different lines of investigation, molecular diagnoses were obtained for each case, with patients harboring pathogenic variants in a range of genes including TMEM106B, GJA1, AGA, POLR3A, and TUBB4A. We describe the lessons learned in reaching the genetic diagnosis, including the importance of (a) utilizing proper multi-gene panels in clinical testing, (b) assessing the reliability of biochemical assays in supporting diagnoses, and (c) understanding the limitations of exome sequencing methods in regard to CNV detection and region coverage in GC-rich areas. Discussion: This study illustrates the importance of applying a collaborative diagnostic approach by combining detailed phenotyping data and metabolic results from the clinical environment with advanced next generation sequencing analysis techniques from the research environment to increase the diagnostic yield in patients with genetically unresolved leukodystrophies.

3.
J Clin Endocrinol Metab ; 106(2): e660-e674, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33005949

ABSTRACT

CONTEXT: 4H or POLR3-related leukodystrophy is an autosomal recessive disorder typically characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism, caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C, and POLR3K. The endocrine and growth abnormalities associated with this disorder have not been thoroughly investigated to date. OBJECTIVE: To systematically characterize endocrine abnormalities of patients with 4H leukodystrophy. DESIGN: An international cross-sectional study was performed on 150 patients with genetically confirmed 4H leukodystrophy between 2015 and 2016. Endocrine and growth abnormalities were evaluated, and neurological and other non-neurological features were reviewed. Potential genotype/phenotype associations were also investigated. SETTING: This was a multicenter retrospective study using information collected from 3 predominant centers. PATIENTS: A total of 150 patients with 4H leukodystrophy and pathogenic variants in POLR3A, POLR3B, or POLR1C were included. MAIN OUTCOME MEASURES: Variables used to evaluate endocrine and growth abnormalities included pubertal history, hormone levels (estradiol, testosterone, stimulated LH and FSH, stimulated GH, IGF-I, prolactin, ACTH, cortisol, TSH, and T4), and height and head circumference charts. RESULTS: The most common endocrine abnormalities were delayed puberty (57/74; 77% overall, 64% in males, 89% in females) and short stature (57/93; 61%), when evaluated according to physician assessment. Abnormal thyroid function was reported in 22% (13/59) of patients. CONCLUSIONS: Our results confirm pubertal abnormalities and short stature are the most common endocrine features seen in 4H leukodystrophy. However, we noted that endocrine abnormalities are typically underinvestigated in this patient population. A prospective study is required to formulate evidence-based recommendations for management of the endocrine manifestations of this disorder.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Endocrine System Diseases/genetics , Growth Disorders/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Mitochondrial Diseases/genetics , Adolescent , Adult , Biological Variation, Population , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Endocrine System Diseases/epidemiology , Endocrine System Diseases/etiology , Female , Genetic Heterogeneity , Growth Disorders/epidemiology , Growth Disorders/etiology , Hereditary Central Nervous System Demyelinating Diseases/complications , Hereditary Central Nervous System Demyelinating Diseases/epidemiology , Humans , Hypogonadism/epidemiology , Hypogonadism/etiology , Infant , Infant, Newborn , Male , Mitochondrial Diseases/complications , Mitochondrial Diseases/epidemiology , Mutation , RNA Polymerase III/genetics , Retrospective Studies , Young Adult
4.
Am J Hum Genet ; 94(6): 891-7, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24814191

ABSTRACT

Epileptic encephalopathies are increasingly thought to be of genetic origin, although the exact etiology remains uncertain in many cases. We describe here three girls from two nonconsanguineous families affected by a clinical entity characterized by dysmorphic features, early-onset intractable epilepsy, intellectual disability, and cortical blindness. In individuals from each family, brain imaging also showed specific changes, including an abnormally marked pontobulbar sulcus and abnormal signals (T2 hyperintensities) and atrophy in the occipital lobe. Exome sequencing performed in the first family did not reveal any gene with rare homozygous variants shared by both affected siblings. It did, however, show one gene, DOCK7, with two rare heterozygous variants (c.2510delA [p.Asp837Alafs(∗)48] and c.3709C>T [p.Arg1237(∗)]) found in both affected sisters. Exome sequencing performed in the proband of the second family also showed the presence of two rare heterozygous variants (c.983C>G [p.Ser328(∗)] and c.6232G>T [p.Glu2078(∗)]) in DOCK7. Sanger sequencing confirmed that all three individuals are compound heterozygotes for these truncating mutations in DOCK7. These mutations have not been observed in public SNP databases and are predicted to abolish domains critical for DOCK7 function. DOCK7 codes for a Rac guanine nucleotide exchange factor that has been implicated in the genesis and polarization of newborn pyramidal neurons and in the morphological differentiation of GABAergic interneurons in the developing cortex. All together, these observations suggest that loss of DOCK7 function causes a syndromic form of epileptic encephalopathy by affecting multiple neuronal processes.


Subject(s)
Blindness, Cortical/genetics , Epilepsy/genetics , GTPase-Activating Proteins/genetics , Intellectual Disability/genetics , Child , Child, Preschool , Epilepsies, Myoclonic/genetics , Exome , Female , GTPase-Activating Proteins/metabolism , Genes, Recessive , Guanine Nucleotide Exchange Factors/genetics , Heterozygote , Homozygote , Humans , Infant , Male , Mutation , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Spasms, Infantile/genetics
7.
Neurogenetics ; 11(4): 457-64, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20640464

ABSTRACT

Leukodystrophies are a heterogeneous group of disorders associated with abnormal central nervous system white matter. The clinical features invariably include upper motor neuron signs and developmental regression with or without other neurological manifestations. The objective of this study was to characterize clinically and genetically a new form of childhood-onset leukodystrophy with ataxia and tremor. We recruited seven French-Canadian cases belonging to five families affected by an unknown form of childhood-onset leukodystrophy. Genome-wide scans (GWS) were performed using the Illumina Hap310 or Hap610 Bead Chip to identify regions of shared homozygosity that were further studied for linkage with STS markers. All cases presented between the ages of 1 and 5 years with spasticity along with other upper motor neuron signs, prominent postural tremor, and cerebellar signs. Though motor regression is a constant feature, cognitive functions are relatively preserved, even late in the course of the disease. The higher frequency of founder diseases in the French-Canadian population and the segregation in pedigrees are suggestive of a recessive mode of inheritance. By homozygosity mapping, we established linkage to a 12.6-Mb SNP-haplotyped region on chromosome 10q22.3-10q23.31 (maximum LOD score: 5.47). We describe an autosomal recessive childhood-onset leukodystrophy with ataxia and tremor mapping to a 12.6 Mb interval on chromosome 10q22.3-10q23.31. Identification of the mutated gene will allow precise diagnosis and genetic counseling and shed light on how its perturbed function leads to white matter abnormalities.


Subject(s)
Ataxia/genetics , Brain Diseases/genetics , Chromosomes, Human, Pair 10 , Tremor/genetics , Age of Onset , Ataxia/ethnology , Brain Diseases/ethnology , Canada , Child, Preschool , Chromosome Mapping , Cohort Studies , Female , Genetic Markers , Genome-Wide Association Study , Humans , Infant , Lod Score , Male , Models, Genetic , Mutation , Pedigree , Tremor/ethnology
8.
Ann Neurol ; 61(6): 599-603, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17427918

ABSTRACT

Hereditary spastic paraplegias (HSPs) are characterized by progressive lower limb spasticity and weakness. Mutations in the SPG3A gene, which encodes the large guanosine triphosphatase atlastin, are the second most common cause of autosomal dominant hereditary spastic paraplegia. In a large SPG3A screen of 70 hereditary spastic paraplegia subjects, a novel in-frame deletion, p.del436N, was identified. Characterization of this deletion showed that it affects neither the guanosine triphosphatase activity of atlastin nor interactions between atlastin and spastin. Interestingly, immunoblot analysis of lymphoblasts from affected patients demonstrated a significant reduction in atlastin protein levels, supporting a loss-of-function disease mechanism.


Subject(s)
GTP Phosphohydrolases/genetics , Paraplegia/genetics , Sequence Deletion/genetics , Adolescent , Adult , Child, Preschool , DNA Mutational Analysis , Electrodiagnosis , Family , GTP Phosphohydrolases/analysis , GTP-Binding Proteins , Humans , Lymphocytes/chemistry , Membrane Proteins , Middle Aged , Paraplegia/diagnosis , Quebec , RNA, Messenger/analysis , Two-Hybrid System Techniques
9.
Neuromuscul Disord ; 17(1): 38-46, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17142039

ABSTRACT

A 26-years old Duchenne muscular dystrophy (DMD) patient received normal muscle-precursor cells, proliferated in vitro and implanted in a thenar eminence, biceps brachii, and in a portion of a gastrocnemius by injections placed 1mm from each other or less. Saline was injected in the contralateral gastrocnemius. The patient was immunosuppressed with tacrolimus. The protocol of cell transplantation was well tolerated and did not cause permanent sequels. Some injected sites were biopsied at 1, 14 and 18 months post-transplantation. Muscles were replaced by fat and fibrosis. In the cell-grafted site of the gastrocnemius, 27.5% of the myofiber profiles expressed donor-derived dystrophin 1 month post-transplantation and 34.5% 18 months post-transplantation. The contralateral gastrocnemius was dystrophin-negative. Myofibers were virtually absent in the biceps brachii, where only two dystrophin-positive myofibers were observed. In conclusion, a "high-density injection" protocol was feasible for intramuscular cell-transplantation in a DMD patient and long-term expression of donor-derived dystrophin was observed.


Subject(s)
Cell Transplantation/methods , Muscle Cells/transplantation , Muscular Dystrophy, Duchenne/surgery , Analysis of Variance , Dystrophin/metabolism , Follow-Up Studies , Humans , Immunosuppressive Agents/therapeutic use , Muscle Cells/immunology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/metabolism , Time Factors
10.
J Neuropathol Exp Neurol ; 65(4): 371-86, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16691118

ABSTRACT

A clinical trial was conducted to test a new protocol of normal muscle precursor cell (MPC) allotransplantation in skeletal muscles of patients with Duchenne muscular dystrophy (DMD). Cultured MPCs obtained from one of the patient's parents were implanted in 0.25 or 1 cm of a Tibialis anterior in 9 patients with DMD. MPC injections were placed 1 to 2 mm from each other, and a similar pattern of saline injections was done in the contralateral muscle. The patients were immunosuppressed with tacrolimus. Muscle biopsies were performed at the injected sites 4 weeks later. In the biopsies of the cell-grafted sites, there were myofibers expressing donor's dystrophin in 8 patients. The percentage of myofibers expressing donor's dystrophin varied from 3.5% to 26%. Evidence of small myofiber neoformation was observed in some patients. Donor-derived dystrophin transcripts were detected by reverse transcriptase-polymerase chain reaction in the cell-grafted sites in all patients. The protocol of immunosuppression was sufficient to obtain these results, although it is not certain whether acute rejection was efficiently controlled in all the cases. In conclusion, intramuscular allotransplantation of normal MPCs can induce the expression of donor-derived dystrophin in skeletal muscles of patients with DMD, although this expression is restricted to the sites of MPC injection.


Subject(s)
Dystrophin/biosynthesis , Muscle Cells/transplantation , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/therapy , Stem Cell Transplantation , Adolescent , Animals , Child , Dystrophin/immunology , Fluorescent Antibody Technique , Graft Rejection/prevention & control , Histocompatibility Antigens/immunology , Humans , Image Processing, Computer-Assisted , Immunosuppressive Agents/therapeutic use , In Situ Hybridization, Fluorescence , Mice , Mice, SCID , Muscle Cells/immunology , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Reverse Transcriptase Polymerase Chain Reaction , Tacrolimus/therapeutic use
11.
Mol Ther ; 9(3): 475-82, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15038390

ABSTRACT

Three Duchenne muscular dystrophy (DMD) patients received injections of myogenic cells obtained from skeletal muscle biopsies of normal donors. The cells (30 x 10 (6)) were injected in 1 cm3 of the tibialis anterior by 25 parallel injections. We performed similar patterns of saline injections in the contralateral muscles as controls. The patients received tacrolimus for immunosuppression. Muscle biopsies were performed at the injected sites 4 weeks later. We observed dystrophin-positive myofibers in the cell-grafted sites amounting to 9 (patient 1), 6.8 (patient 2), and 11% (patient 3). Since patients 1 and 2 had identified dystrophin-gene deletions these results were obtained using monoclonal antibodies specific to epitopes coded by the deleted exons. Donor dystrophin was absent in the control sites. Patient 3 had exon duplication and thus specific donor-dystrophin detection was not possible. However, there were fourfold more dystrophin-positive myofibers in the cell-grafted than in the control site. Donor-dystrophin transcripts were detected by RT-PCR (using primers reacting with a sequence int eh deleted exons) only in the cell-grafted sites in patients 1 and 2. Dystrophin transcripts were more abundant in the cell-grafted than in the control site in patient 3. Therefore, significant dystrophin expression can be obtained in teh skeletal muscles of DMD patients following specific conditions of cell delivery and immunosuppression.


Subject(s)
Dystrophin/biosynthesis , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Adolescent , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Biopsy , Cell Transplantation/methods , Child , Cytoskeletal Proteins/metabolism , DNA Primers/chemistry , Dystrophin/metabolism , Epitopes , Haplotypes , Histocompatibility Testing , Humans , Immunohistochemistry , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/pharmacology , Membrane Glycoproteins/metabolism , Microscopy, Fluorescence , Muscle, Skeletal/metabolism , Mutation , Reverse Transcriptase Polymerase Chain Reaction , Sarcoglycans , Tacrolimus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...