Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Autophagy ; 15(3): 527-542, 2019 03.
Article in English | MEDLINE | ID: mdl-30335568

ABSTRACT

50% of Caucasians carry a Thr300Ala variant (T300A) in the protein encoded by the macroautophagy/autophagy gene ATG16L1. Here, we show that the T300A variant confers protection against urinary tract infections (UTIs), the most common infectious disease in women. Using knockin mice carrying the human T300A variant, we show that the variant limits the UTI-causing bacteria, uropathogenic Escherichia coli (UPEC), from establishing persistent intracellular reservoirs, which can seed UTI recurrence. This phenotype is recapitulated in mice lacking Atg16l1 or Atg7 exclusively in the urothelium. We further show that mice with the T300A variant exhibit urothelial cellular abnormalities, including vesicular congestion and aberrant accumulation of UPK (uroplakin) proteins. Importantly, presence of the T300A variant in humans is associated with similar urothelial architectural abnormalities, indicating an evolutionarily conserved impact. Mechanistically, we show that the reduced bacterial persistence is independent of basal autophagic flux or proinflammatory cytokine responses and does not involve Atg14 or Epg5. However, the T300A variant is associated with increased expression of the small GTPase Rab33b; RAB33B interacts with ATG16L1, as well as other secretory RABs, RAB27B and RAB11A, important for UPEC exocytosis from the urothelium. Finally, inhibition of secretory RABs in bladder epithelial cells increases intracellular UPEC load. Together, our results reveal that UPEC selectively utilize genes important for autophagosome formation to persist in the urothelium, and that the presence of the T300A variant in ATG16L1 is associated with changes in urothelial vesicle trafficking, which disrupts the ability of UPEC to persist, thereby limiting the risk of recurrent UTIs. Abbreviations: 3-PEHPC: 3-pyridinyl ethylidene hydroxyl phosphonocarboxylate; ATG: autophagy; ATG16L1: autophagy related 16 like 1; BECs: bladder epithelial cells; dpi: days post infection; hpi: hours post infection; IF: immunofluorescence; IL1B: interleukin 1 beta; IL6: interleukin 6; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MVB: multivesicular bodies; T300A: Thr300Ala; TNF: tumor necrosis factor; QIR(s): quiescent intracellular reservoir(s); siRNA: short interfering RNA; UPEC: uropathogenic Escherichia coli; UTI(s): urinary tract infection(s); TEM: transmission electron microscopy; WT: wild type.


Subject(s)
Autophagy/genetics , Escherichia coli Infections/metabolism , Urinary Tract Infections/metabolism , Uropathogenic Escherichia coli , Urothelium/microbiology , Animals , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Cell Line , Epithelial Cells/metabolism , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Female , Genetic Variation , Humans , Macrophages/metabolism , Mice , Mice, Knockout , Multivesicular Bodies/genetics , Multivesicular Bodies/microbiology , Multivesicular Bodies/pathology , Urinary Bladder/microbiology , Urinary Tract Infections/genetics , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Uroplakins/metabolism , Urothelium/cytology , Urothelium/metabolism , Urothelium/ultrastructure , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism
2.
Infect Immun ; 81(3): 733-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23264047

ABSTRACT

Recurrent urinary tract infections (UTIs), primarily caused by uropathogenic Escherichia coli (UPEC), annually affect over 13 million patients in the United States. Menopausal women are disproportionally susceptible, suggesting estrogen deficiency is a significant risk factor for chronic and recurrent UTI. How estrogen status governs susceptibility to UTIs remains unknown, and whether hormone therapy protects against UTIs remains controversial. Here, we used a mouse model of surgical menopause by ovariectomy and demonstrate a protective role for estrogen in UTI pathogenesis. We found that ovariectomized mice had significantly higher bacteriuria, a more robust inflammatory response, and increased production of the proinflammatory cytokine interleukin-6 (IL-6) upon UPEC infection compared to sham-operated controls. We further show that response of the urothelial stem cell niche to infection, normally activated to restore homeostasis after infection, was aberrant in ovariectomized mice with defective superficial urothelial cell differentiation. Finally, UPEC-infected ovariectomized mice showed a significant increase in quiescent intracellular bacterial reservoirs, which reside in the urothelium and can seed recurrent infections. Importantly, this and other ovariectomy-induced outcomes of UTI were reversible upon estrogen supplementation. Together, our findings establish ovariectomized mice as a model for UTIs in menopausal women and pinpoint specific events during course of infection that are most susceptible to estrogen deficiency. These findings have profound implications for the understanding of the role of estrogen and estrogen therapy in bladder health and pathogen defense mechanisms and open the door for prophylaxis for menopausal women with recurrent UTIs.


Subject(s)
Escherichia coli Infections/pathology , Estrogens/metabolism , Ovariectomy , Urinary Tract Infections/pathology , Uropathogenic Escherichia coli/physiology , Animals , Bacteriuria , Delayed-Action Preparations , Drug Implants , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/urine , Estradiol/administration & dosage , Estradiol/pharmacology , Female , Inflammation/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , United States , Urinary Tract Infections/immunology , Urinary Tract Infections/metabolism
3.
Autophagy ; 8(11): 1693-4, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22874553

ABSTRACT

Autophagy is generally considered to be antipathogenic. The autophagy gene ATG16L1 has a commonly occurring mutation associated with Crohn disease (CD) and intestinal cell abnormalities. Mice hypomorphic for ATG16L1 (ATG16L1(HM)) recreate specific features of CD. Our recent study shows that the same ATG16L1(HM) mice that are susceptible to intestinal inflammatory disease are protected from urinary tract infections (UTI), a common and important human disease primarily caused by uropathogenic E. coli (UPEC). UPEC colonize the bladder and exhibit both luminal and intra-epithelial stages. The host responds by recruiting innate immune cells and shedding infected epithelial cells to clear infection. Despite these countermeasures, UPEC can persist within the bladder epithelium as membrane-enclosed quiescent intracellular reservoirs (QIRs) that can seed recurrent UTI. The mechanisms of persistence remain unknown. In this study, we show that ATG16L1 deficiency protects the host against acute UTI and UPEC latency. ATG16L1(HM) mice clear urinary bacterial loads more rapidly and thoroughly due to ATG16L1-deficient innate immune components. Furthermore, ATG16L1(HM) mice exhibit superficial urothelial cell-autonomous architectural aberrations that also result in significantly reduced QIR numbers. Our findings reveal a host-protective effect of ATG16L1 deficiency in vivo against a common pathogen.


Subject(s)
Carrier Proteins/metabolism , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Animals , Autophagy , Humans , Immunity , Mice , Phagosomes/metabolism , Phagosomes/ultrastructure , Urinary Tract Infections/immunology , Uropathogenic Escherichia coli/metabolism , Uropathogenic Escherichia coli/ultrastructure
4.
Proc Natl Acad Sci U S A ; 109(27): 11008-13, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22715292

ABSTRACT

Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1(HM)) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1(HM) hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1(HM) epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/immunology , Escherichia coli Infections/immunology , Urinary Tract Infections/immunology , Uropathogenic Escherichia coli/immunology , Acute Disease , Animals , Autophagy/immunology , Autophagy-Related Proteins , Bacteriuria/immunology , Bacteriuria/pathology , Bone Marrow Transplantation , Cell Division/immunology , Disease Models, Animal , Escherichia coli Infections/pathology , Female , Homeodomain Proteins/genetics , Humans , Mice , Mice, Mutant Strains , Monocytes/immunology , Neutrophils/immunology , Transplantation Chimera , Urinary Bladder/immunology , Urinary Bladder/microbiology , Urinary Bladder/pathology , Urinary Tract Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...