Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
AIDS ; 37(15): 2297-2304, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37702421

ABSTRACT

OBJECTIVE: People with HIV rarely control viral replication after cessation of antiretroviral therapy (ART). We present a person with HIV with extraordinary posttreatment control (PTC) for over 23 years after temporary ART during acute HIV infection (AHI) leading to a new insight in factors contributing to PTC. DESIGN/METHODS: Viral reservoir was determined by HIV qPCR, Intact Proviral DNA Assay, and quantitative viral outgrowth assay. Viral replication kinetics were determined in autologous and donor PBMC. IgG levels directed against HIV envelope and neutralizing antibodies were measured. Immune phenotyping of T cells and HIV-specific T-cell responses were analyzed by flow cytometry. RESULTS: The case presented with AHI and a plasma viral load of 2.7 million copies/ml. ART was initiated 2 weeks after diagnosis and interrupted after 26 months. Replicating virus was isolated shortly after start ART. At 18 years after treatment interruption, HIV-DNA in CD4 + T cells and low levels of HIV-RNA in plasma (<5 copies/ml) were detectable. Stable HIV envelope glycoprotein-directed IgG was present during follow-up, but lacked neutralizing activity. Strong antiviral CD8 + T-cell responses, in particular targeting HIV-gag, were detected during 25 years follow-up. Moreover, we found a P255A mutation in an HLA-B∗44 : 02 restricted gag-epitope, which was associated with decreased replication. CONCLUSION: We describe an exceptional case of PTC, which is likely associated with sustained potent gag-specific CD8 + T-cell responses in combination with a replication attenuating escape mutation in gag. Understanding the initiation and preservation of the HIV-specific T-cell responses could guide the development of strategies to induce HIV control.


Subject(s)
HIV Infections , Humans , Leukocytes, Mononuclear , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , DNA , Immunoglobulin G , Viral Load
2.
AIDS ; 37(2): 247-257, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36541637

ABSTRACT

OBJECTIVES: Despite suppressive antiretroviral therapy (ART), HIV can persist in a diverse range of CD4+ T-cell subsets. Through longitudinal env sampling from people with HIV (PWH) on ART, we characterized the persistence and phenotypic properties of HIV envs over two time-points (T1 and T2). METHODS: Longitudinal blood and lymphoid tissue samples were obtained from eight PWH on suppressive ART. Single genome amplification (SGA) was performed on env to understand the genetic diversity and degree of clonal expansions over time. A subset of envs were used to generate pseudovirus particles to assess sensitivity to autologous plasma IgG and broadly neutralizing antibodies (bNAbs). RESULTS: Identical env sequences indicating clonal expansion persisted between T1 and T2 and within multiple T-cell subsets. At both time-points, CXCR4-tropic (X4) Envs were more prevalent in naive and central memory cells; the proportion of X4 Envs did not significantly change in each subset between T1 and T2. Autologous purified plasma IgG showed variable neutralization of Envs, with no significant difference in neutralization between R5 and X4 Envs. X4 Envs were more sensitive to neutralization with clinical bNAbs, with CD4-binding site bNAbs demonstrating high breadth and potency against Envs. CONCLUSION: Our data suggest the viral reservoir in PWH on ART was predominantly maintained over time through proliferation and potentially differentiation of infected cells. We found the humoral immune response to Envs within the latent reservoir was variable between PWH. Finally, we identified coreceptor usage can influence bNAb sensitivity and may need to be considered for future bNAb immunotherapy approaches.


Subject(s)
HIV Infections , Humans , Broadly Neutralizing Antibodies/therapeutic use , CD4-Positive T-Lymphocytes , env Gene Products, Human Immunodeficiency Virus/genetics , T-Lymphocyte Subsets , Anti-Retroviral Agents/therapeutic use , Immunoglobulin G , HIV Antibodies , Antibodies, Neutralizing
3.
J Leukoc Biol ; 112(5): 1297-1315, 2022 11.
Article in English | MEDLINE | ID: mdl-36148896

ABSTRACT

The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.


Subject(s)
HIV Infections , HIV-1 , Humans , Virus Latency , Astrocytes , Transcription Factors/metabolism , CD4-Positive T-Lymphocytes , Virus Activation
4.
Nanoscale ; 14(8): 3049-3061, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35142755

ABSTRACT

Real-time detection and nanoscale imaging of human immunodeficiency virus type 1 ribonucleic acid (HIV-1 RNA) in latently infected cells that persist in people living with HIV-1 on antiretroviral therapy in blood and tissue may reveal new insights needed to cure HIV-1 infection. Herein, we develop a strategy combining DNA nanotechnology and super-resolution expansion microscopy (ExM) to detect and image a 22 base sequence transcribed from the HIV-1 promoter in model live and fixed cells. We engineer a chimeric locked nucleic acid (LNA)-DNA sensor via hybridization chain reaction to probe HIV-1 RNA in the U3 region of the HIV-1 long terminal repeat (LTR) by signal amplification in live cells. We find that the viral RNA transcript of the U3 region of the HIV-1 LTR, namely PromA, is a valid and specific biomarker to detect infected live cells. The efficiency and selectivity of the LNA-DNA sensor are evaluated in combination with ExM. Unlike standard ExM methods, which rely on additional custom linkers to anchor and immobilize RNA molecules in the intracellular polymeric network, in the current strategy, we probe and image the HIV-1 RNA target at nanoscale resolution, without resorting to chemical linkers or additional preparation steps. This is achieved by physical entrapment of the HIV-1 viral transcripts in the cells post-expansion by finely tuning the mesh size of the intracellular polymeric network.


Subject(s)
HIV-1 , DNA , HIV-1/genetics , Humans , Oligonucleotides , RNA, Viral/genetics
5.
Open Forum Infect Dis ; 9(1): ofab553, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34988250

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 infection after coronavirus disease 2019 vaccination raises concerns about the emergence of vaccine escape variants. Here we characterize 14 breakthrough infections among 5860 fully vaccinated Dutch health care workers ≥14 days after the final dose of vaccination with either BNT162b2, mRNA-1273, or Ad26.COV2.S. These breakthrough infections presented with regular B.1.1.7 (Alpha) and B.1.617.2 (Delta) variants and high viral loads, despite normal vaccine-induced B- and T-cell immune responses detected by live virus neutralization assays and ELISpot. High-risk exposure settings, such as in households, indicate a potential risk of viral transmission despite full vaccination.

6.
AIDS ; 36(1): 75-82, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34586085

ABSTRACT

OBJECTIVE: The aim of this study was to examine whether administering both vorinostat and disulfiram to people with HIV (PWH) on antiretroviral therapy (ART) is well tolerated and can enhance HIV latency reversal. DESIGN: Vorinostat and disulfiram can increase HIV transcription in PWH on ART. Together, these agents may lead to significant HIV latency reversal. METHODS: Virologically suppressed PWH on ART received disulfiram 2000 mg daily for 28 days and vorinostat 400 mg daily on days 8-10 and 22-24. The primary endpoint was plasma HIV RNA on day 11 relative to baseline using a single copy assay. Assessments included cell-associated unspliced RNA as a marker of latency reversal, HIV DNA in CD4+ T-cells, plasma HIV RNA, and plasma concentrations of ART, vorinostat, and disulfiram. RESULTS: The first two participants (P1 and P2) experienced grade 3 neurotoxicity leading to trial suspension. After 24 days, P1 presented with confusion, lethargy, and ataxia having stopped disulfiram and ART. Symptoms resolved by day 29. After 11 days, P2 presented with paranoia, emotional lability, lethargy, ataxia, and study drugs were ceased. Symptoms resolved by day 23. CA-US RNA increased by 1.4-fold and 1.3-fold for P1 and P2 respectively. Plasma HIV RNA was detectable from day 8 to 37 (peak 81 copies ml-1) for P2 but was not increased in P1 Antiretroviral levels were therapeutic and neuronal injury markers were elevated in P1. CONCLUSION: The combination of prolonged high-dose disulfiram and vorinostat was not safe in PWH on ART and should not be pursued despite evidence of latency reversal.


Subject(s)
HIV Infections , Disulfiram/administration & dosage , Drug Therapy, Combination/adverse effects , HIV Infections/drug therapy , Humans , Virus Latency/physiology , Vorinostat/administration & dosage
7.
Nat Commun ; 12(1): 4270, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34257311

ABSTRACT

The recent dramatic appearance of variants of concern of SARS-coronavirus-2 (SARS-CoV-2) highlights the need for innovative approaches that simultaneously suppress viral replication and circumvent viral escape from host immunity and antiviral therapeutics. Here, we employ genome-wide computational prediction and single-nucleotide resolution screening to reprogram CRISPR-Cas13b against SARS-CoV-2 genomic and subgenomic RNAs. Reprogrammed Cas13b effectors targeting accessible regions of Spike and Nucleocapsid transcripts achieved >98% silencing efficiency in virus-free models. Further, optimized and multiplexed Cas13b CRISPR RNAs (crRNAs) suppress viral replication in mammalian cells infected with replication-competent SARS-CoV-2, including the recently emerging dominant variant of concern B.1.1.7. The comprehensive mutagenesis of guide-target interaction demonstrated that single-nucleotide mismatches does not impair the capacity of a potent single crRNA to simultaneously suppress ancestral and mutated SARS-CoV-2 strains in infected mammalian cells, including the Spike D614G mutant. The specificity, efficiency and rapid deployment properties of reprogrammed Cas13b described here provide a molecular blueprint for antiviral drug development to suppress and prevent a wide range of SARS-CoV-2 mutants, and is readily adaptable to other emerging pathogenic viruses.


Subject(s)
Mutation , SARS-CoV-2/physiology , Virus Replication/physiology , Animals , Antiviral Agents/pharmacology , COVID-19/virology , CRISPR-Cas Systems , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats , Drug Development , Genome, Viral , HEK293 Cells , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Replication/genetics , COVID-19 Drug Treatment
8.
ACS Nano ; 15(3): 3736-3753, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33600163

ABSTRACT

T cells play an important role in immunity and repair and are implicated in diseases, including blood cancers, viral infections, and inflammation, making them attractive targets for the treatment and prevention of diseases. Over recent years, the advent of nanomedicine has shown an increase in studies that use nanoparticles as carriers to deliver therapeutic cargo to T cells for ex vivo and in vivo applications. Nanoparticle-based delivery has several advantages, including the ability to load and protect a variety of drugs, control drug release, improve drug pharmacokinetics and biodistribution, and site- or cell-specific targeting. However, the delivery of nanoparticles to T cells remains a major technological challenge, which is primarily due to the nonphagocytic nature of T cells. In this review, we discuss the physiological barriers to effective T cell targeting and describe the different approaches used to deliver cargo-loaded nanoparticles to T cells for the treatment of disease such as T cell lymphoma and human immunodeficiency virus (HIV). In particular, engineering strategies that aim to improve nanoparticle internalization by T cells, including ligand-based targeting, will be highlighted. These nanoparticle engineering approaches are expected to inspire the development of effective nanomaterials that can target or manipulate the function of T cells for the treatment of T cell-related diseases.


Subject(s)
Nanoparticles , T-Lymphocytes , Drug Delivery Systems , Humans , Nanomedicine , Tissue Distribution
9.
PLoS Pathog ; 17(1): e1009214, 2021 01.
Article in English | MEDLINE | ID: mdl-33465157

ABSTRACT

The precise role of CD4 T cell turnover in maintaining HIV persistence during antiretroviral therapy (ART) has not yet been well characterized. In resting CD4 T cell subpopulations from 24 HIV-infected ART-suppressed and 6 HIV-uninfected individuals, we directly measured cellular turnover by heavy water labeling, HIV reservoir size by integrated HIV-DNA (intDNA) and cell-associated HIV-RNA (caRNA), and HIV reservoir clonality by proviral integration site sequencing. Compared to HIV-negatives, ART-suppressed individuals had similar fractional replacement rates in all subpopulations, but lower absolute proliferation rates of all subpopulations other than effector memory (TEM) cells, and lower plasma IL-7 levels (p = 0.0004). Median CD4 T cell half-lives decreased with cell differentiation from naïve to TEM cells (3 years to 3 months, p<0.001). TEM had the fastest replacement rates, were most highly enriched for intDNA and caRNA, and contained the most clonal proviral expansion. Clonal proviruses detected in less mature subpopulations were more expanded in TEM, suggesting that they were maintained through cell differentiation. Earlier ART initiation was associated with lower levels of intDNA, caRNA and fractional replacement rates. In conclusion, circulating integrated HIV proviruses appear to be maintained both by slow turnover of immature CD4 subpopulations, and by clonal expansion as well as cell differentiation into effector cells with faster replacement rates.


Subject(s)
Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/pathology , Cell Differentiation , HIV Infections/virology , HIV-1/immunology , Viral Load , Virus Replication , Adult , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Case-Control Studies , DNA, Viral/analysis , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/pathology , HIV-1/drug effects , HIV-1/genetics , Humans , Male , Middle Aged
10.
ACS Appl Bio Mater ; 4(3): 2781-2789, 2021 03 15.
Article in English | MEDLINE | ID: mdl-35014317

ABSTRACT

The internalization of therapeutic molecules into cells-a critical step in enabling a suite of autologous ex vivo gene and cell therapies-is highly regulated by the lipid barrier imposed by the cell membrane. Strategies to increase the efficiency of delivering these exogenous payloads into the cell, while maintaining the integrity of both the therapeutic molecules to be delivered as well as the host cells they are delivered to, are therefore required. This is especially the case for suspension cells that are particularly difficult to transfect. In this work, we show that it is possible to enhance the uptake of short interfering RNA (siRNA) into nonadherent Jurkat and HuT 78 cells with a rapid poration-free method involving high-frequency (MHz order) acoustic excitation. The 2-fold enhancement in gene knockdown is almost comparable with that obtained with conventional nucleofection, which is among the most widely used intracellular delivery methods, but with considerably higher cell viabilities (>91% compared to approximately 76%) owing to the absence of pore formation. The rapid and effective delivery afforded by the platform, together with its low cost and scalability, therefore renders it a potent tool in the cell engineering pipeline.


Subject(s)
Biocompatible Materials/metabolism , Cell Membrane/metabolism , RNA, Small Interfering/metabolism , Biocompatible Materials/chemistry , Cell Engineering , Cell Membrane/chemistry , Cells, Cultured , Humans , Jurkat Cells , Materials Testing , Particle Size , RNA, Small Interfering/chemistry , Vibration
11.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: mdl-31852784

ABSTRACT

HIV can persist in people living with HIV (PLWH) on antiretroviral therapy (ART) in multiple CD4+ T cell subsets, including naive cells, central memory (CM) cells, transitional (TM) cells, and effector memory (EM) cells. Since these cells express different levels of the viral coreceptors CXCR4 and CCR5 on their surface, we sought to determine whether the HIV envelope protein (Env) was genotypically and phenotypically different between CD4+ T cell subsets isolated from PLWH on suppressive ART (n = 8). Single genome amplification for the HIV env gene was performed on genomic DNA extracts from different CD4+ T cell subsets. We detected CXCR4-using (X4) strains in five of the eight participants studied, and in these participants, the prevalence of X4 strains was higher in naive CD4+ T cells than in the memory subsets. Conversely, R5 strains were mostly found in the TM and EM populations. Identical sets of env sequences, consistent with clonal expansion of some infected cells, were more frequent in EM cells. These expanded identical sequences could also be detected in multiple CD4+ T cell subsets, suggesting that infected cells can undergo T cell differentiation. These identical sequences largely encoded intact and functional Env proteins. Our results are consistent with a model in which X4 HIV strains infect and potentially establish latency in naive and CM CD4+ T cells through direct infection, in addition to maintenance of the reservoir through differentiation and proliferation of infected cells.IMPORTANCE In people living with HIV (PLWH) on suppressive ART, latent HIV can be found in a diverse range of CD4+ T cells, including quiescent naive and central memory cells that are typically difficult to infect in vitro It is currently unclear how latency is established in these cells in vivo We show that in CD4+ T cells from PLWH on suppressive ART, the use of the coreceptor CXCR4 was prevalent among viruses amplified from naive and central memory CD4+ T cells. Furthermore, we found that expanded numbers of identical viral sequences were most common in the effector memory population, and these identical sequences were also found in multiple different CD4+ T cell subsets. Our results help to shed light on how a range of CD4+ T cell subsets come to harbor HIV DNA, which is one of the major barriers to eradicating the virus from PLWH.


Subject(s)
Anti-Retroviral Agents/administration & dosage , CD4-Positive T-Lymphocytes/immunology , HIV Infections , HIV-1/physiology , Immunologic Memory/drug effects , Receptors, CXCR4/immunology , Virus Latency/drug effects , HEK293 Cells , HIV Infections/drug therapy , HIV Infections/immunology , Humans
12.
Curr Opin HIV AIDS ; 13(2): 152-159, 2018 03.
Article in English | MEDLINE | ID: mdl-29206656

ABSTRACT

PURPOSE OF REVIEW: To provide an overview of recent research of how HIV integration relates to productive and latent infection and implications for cure strategies. RECENT FINDINGS: How and where HIV integrates provides new insights into how HIV persists on antiretroviral therapy (ART). Clonal expansion of infected cells with the same integration site demonstrates that T-cell proliferation is an important factor in HIV persistence, however, the driver of proliferation remains unclear. Clones with identical integration sites harbouring defective provirus can accumulate in HIV-infected individuals on ART and defective proviruses can express RNA and produce protein. HIV integration sites differ in clonally expanded and nonexpanded cells and in latently and productively infected cells and this influences basal and inducible transcription. There is a growing number of cellular proteins that can alter the pattern of integration to favour latency. Understanding these pathways may identify new interventions to eliminate latently infected cells. SUMMARY: Using advances in analysing HIV integration sites, T-cell proliferation of latently infected cells is thought to play a major role in HIV persistence. Clonal expansion has been demonstrated with both defective and intact viruses. Production of viral RNA and protein from defective viruses may play a role in driving chronic immune activation. The site of integration may determine the likelihood of proliferation and the degree of basal and induced transcription. Finally, host factors and gene expression at the time of infection may determine the integration site. Together these new insights may lead to novel approaches to elimination of latently infected cells.


Subject(s)
HIV Infections/virology , HIV-1/physiology , Virus Integration , Animals , HIV Infections/genetics , HIV Infections/immunology , HIV-1/genetics , Humans , T-Lymphocytes/immunology , T-Lymphocytes/virology
13.
AIDS ; 31(13): 1839-1845, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28514279

ABSTRACT

OBJECTIVE: To study the effects of alemtuzumab on HIV persistence in an HIV-infected individual on antiretroviral therapy (ART) with Sezary syndrome, a rare malignancy of CD4 T cells. DESIGN: Case report. METHODS: Blood was collected 30 and 18 months prior to presentation with Sezary syndrome, at the time of presentation and during alemtuzumab. T-cell subsets in malignant (CD7-CD26-TCR-VBeta2+) and nonmalignant cells were quantified by flow cytometry. HIV-DNA in total CD4 T cells, in sorted malignant and nonmalignant CD4 T cells, was quantified by PCR and clonal expansion of HIV-DNA assessed by full-length next-generation sequencing. RESULTS: HIV-hepatitis B virus coinfection was diagnosed and antiretroviral therapy initiated 4 years prior to presentation with Sezary syndrome and primary cutaneous anaplastic large cell lymphoma. The patient received alemtuzumab 10 mg three times per week for 4 weeks but died 6 weeks post alemtuzumab. HIV-DNA was detected in nonmalignant but not in malignant CD4 T cells, consistent with expansion of a noninfected CD4 T-cell clone. Full-length HIV-DNA sequencing demonstrated multiple defective viruses but no identical or expanded sequences. Alemtuzumab extensively depleted T cells, including more than 1 log reduction in total T cells and more than 3 log reduction in CD4 T cells. Finally, alemtuzumab decreased HIV-DNA in CD4 T cells by 57% but HIV-DNA remained detectable at low levels even after depletion of nearly all CD4 T cells. CONCLUSION: Alemtuzumab extensively depleted multiple T-cell subsets and decreased the frequency of but did not eliminate HIV-infected CD4 T cells. Studying the effects on HIV persistence following immune recovery in HIV-infected individuals who require alemtuzumab for malignancy or in animal studies may provide further insights into novel cure strategies.


Subject(s)
Alemtuzumab/administration & dosage , Anti-Retroviral Agents/therapeutic use , Antineoplastic Agents, Immunological/administration & dosage , HIV Infections/drug therapy , HIV/isolation & purification , Sezary Syndrome/drug therapy , Skin Neoplasms/drug therapy , CD4-Positive T-Lymphocytes/virology , DNA, Viral/analysis , Flow Cytometry , HIV Infections/complications , Humans , Immunophenotyping , Male , Middle Aged , T-Lymphocyte Subsets/immunology
15.
Retrovirology ; 14(1): 2, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28086908

ABSTRACT

BACKGROUND: Assessing the location and frequency of HIV integration sites in latently infected cells can potentially inform our understanding of how HIV persists during combination antiretroviral therapy. We developed a novel high throughput sequencing method to evaluate HIV integration sites in latently infected cell lines to determine whether there was virus replication or clonal expansion in these cell lines observed as multiple integration events at the same position. RESULTS: We modified a previously reported method using random DNA shearing and PCR to allow for high throughput robotic processing to identify the site and frequency of HIV integration in latently infected cell lines. Latently infected cell lines infected with intact virus demonstrated multiple distinct HIV integration sites (28 different sites in U1, 110 in ACH-2 and 117 in J1.1 per 150,000 cells). In contrast, cell lines infected with replication-incompetent viruses (J-Lat cells) demonstrated single integration sites. Following in vitro passaging of the ACH-2 cell line, we observed a significant increase in the frequency of unique HIV integration sites and there were multiple mutations and large deletions in the proviral DNA. When the ACH-2 cell line was cultured with the integrase inhibitor raltegravir, there was a significant decrease in the number of unique HIV integration sites and a transient increase in the frequency of 2-LTR circles consistent with virus replication in these cells. CONCLUSION: Cell lines latently infected with intact HIV demonstrated multiple unique HIV integration sites indicating that these cell lines are not clonal and in the ACH-2 cell line there was evidence of low level virus replication. These findings have implications for the use of latently infected cell lines as models of HIV latency and for the use of these cells as standards.


Subject(s)
HIV/physiology , Virus Integration , Virus Latency , Virus Replication , Cell Line , High-Throughput Nucleotide Sequencing/methods , Humans
16.
PLoS One ; 10(7): e0132430, 2015.
Article in English | MEDLINE | ID: mdl-26208341

ABSTRACT

OBJECTIVE: The immunomodulatory effects of the CCR5-antagonist maraviroc might be beneficial in patients with a suboptimal immunological response, but results of different cART (combination antiretroviral therapy) intensification studies are conflicting. Therefore, we performed a 48-week placebo-controlled trial to determine the effect of maraviroc intensification on CD4+ T-cell counts and immune activation in these patients. DESIGN: Double-blind, placebo-controlled, randomized trial. METHODS: Major inclusion criteria were 1. CD4+ T-cell count <350 cells/µL while at least two years on cART or CD4+ T-cell count <200 cells/µL while at least one year on cART, and 2. viral suppression for at least the previous 6 months. HIV-infected patients were randomized to add maraviroc (41 patients) or placebo (44 patients) to their cART regimen for 48 weeks. Changes in CD4+ T-cell counts (primary endpoint) and other immunological parameters were modeled using linear mixed effects models. RESULTS: No significant differences for the modelled increase in CD4+ T-cell count (placebo 15.3 CD4+ T cells/µL (95% confidence interval (CI) [1.0, 29.5] versus maraviroc arm 22.9 CD4+ T cells/µL (95% CI [7.4, 38.5] p = 0.51) or alterations in the expression of markers for T-cell activation, proliferation and microbial translocation were found between the arms. However, maraviroc intensification did increase the percentage of CCR5 expressing CD4+ and CD8+ T-cells, and the plasma levels of the CCR5 ligand MIP-1ß. In contrast, the percentage of ex-vivo apoptotic CD8+ and CD4+ T-cells decreased in the maraviroc arm. CONCLUSIONS: Maraviroc intensification of cART did not increase CD4+ T-cell restoration or decrease immune activation as compared to placebo. However, ex-vivo T-cell apoptosis was decreased in the maraviroc arm. TRIAL REGISTRATION: ClinicalTrials.gov NCT00875368.


Subject(s)
Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active , Cyclohexanes/therapeutic use , HIV Infections/drug therapy , HIV-1/drug effects , Triazoles/therapeutic use , Adult , CCR5 Receptor Antagonists/therapeutic use , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Double-Blind Method , Female , HIV Fusion Inhibitors/therapeutic use , HIV Infections/virology , HIV-1/physiology , Humans , Lymphocyte Count , Male , Maraviroc , Middle Aged , Receptors, CCR5/metabolism , Time Factors , Treatment Outcome
17.
Clin Infect Dis ; 59(4): 596-600, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24759824

ABSTRACT

The "Berlin patient" is the first patient cured of HIV-1 infection after allogeneic transplantation with nonfunctional CCR5 coreceptor stem cells. We demonstrate that CXCR4-predicted minority viruses present prior to transplantation were unable to rebound after transplantation due to their dependence on CCR5 for replication and high genetic barrier toward CXCR4 usage.


Subject(s)
HIV Infections/virology , HIV-1/physiology , Leukemia, Myeloid, Acute/therapy , Receptors, CCR5/metabolism , Receptors, HIV/metabolism , Stem Cell Transplantation , Viral Tropism , HIV Infections/therapy , Humans , Leukemia, Myeloid, Acute/complications , Receptors, CXCR4/metabolism , Treatment Outcome , Virus Replication
18.
J Antimicrob Chemother ; 68(9): 2007-14, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23677920

ABSTRACT

OBJECTIVES: Using deep sequencing methods, we intensively investigated the selective pressure of maraviroc on the viral population in four patients with dual/mixed HIV-1 experiencing treatment failure. METHODS: Patients received maraviroc add-on therapy (n = 4). Tropism was determined by Monogram's Trofile assay and/or 'deep' sequencing. Longitudinal 'deep' sequence analysis used triplicate HIV V3 RT-PCR on plasma samples. Sequences were interpreted using the geno2phenocoreceptor algorithm with a 3.5% false-positive rate (FPR) cut-off. RESULTS: Patients had a median viral load of 4.7 log10 HIV RNA copies/mL with a median of 24% chemokine (C-X-C motif) receptor 4 (CXCR4)-using virus at baseline. Following maraviroc exposure, the chemokine (C-C motif) receptor 5 (CCR5)-using virus (R5) plasma viral load decreased by at least 1 log10, and only non-R5 variants with extremely low FPR values predominated after 21 days. Virus with an FPR ≤1.8% accounted for more than 90% of the circulating virus, having expanded to occupy the 'space' left by the suppression of R5 variants. Population genetic estimates of viral fitness in the presence of maraviroc showed a steep rise around an FPR value of 2%. CONCLUSIONS: Longitudinal analysis of independent R5 and non-R5 HIV populations shows that maraviroc selects viruses with an extremely low FPR, implying that the antiviral activity of maraviroc may extend to a broader range of HIV variants than previously suspected.


Subject(s)
Anti-HIV Agents/therapeutic use , Cyclohexanes/therapeutic use , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/genetics , Selection, Genetic , Triazoles/therapeutic use , Viral Tropism , Cohort Studies , HIV-1/isolation & purification , HIV-1/physiology , High-Throughput Nucleotide Sequencing , Humans , Longitudinal Studies , Maraviroc , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Receptors, HIV/metabolism
19.
Curr Opin HIV AIDS ; 7(5): 470-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22832711

ABSTRACT

PURPOSE OF REVIEW: HIV co-receptor tropism testing is recommended before therapy when the C-C chemokine receptor type 5 antagonist maraviroc is initiated. This review addresses the use of population genotypic tropism testing in relation to clinical practice. RECENT FINDINGS: Genotypic tropism tests predict viral co-receptor tropism based on the sequence of the V3 loop of the viral envelope. HIV occurs in a swarm of variants in the patient's body, called quasispecies. As next-generation sequencing techniques are not generally accessible to date, triplicate testing is often performed to improve sensitivity of population-based approaches, but no prospective studies assessing the performance of single and triplicate procedures related to clinical outcome have been performed yet. For interpretation of the genotype several web-based algorithms have been developed. Varying the cut-off of the commonly used geno2pheno[co-receptor] algorithm changes the sensitivity and specificity of the tropism prediction. In retrospective analyses of clinical studies and cohorts genotypic population tropism testing demonstrated equal correlation with clinical outcome on maraviroc compared with phenotypic assays.In patients with suppressed viraemia, proviral DNA testing is a well tolerated alternative to HIV-RNA testing. SUMMARY: Population genotypic methods have greater accessibility, lower cost, and faster turnaround time than other methods. Despite limited sensitivity for minority variants HIV genotypic population tropism testing showed good correlation with clinical outcome.


Subject(s)
HIV Infections/virology , HIV/classification , HIV/physiology , Molecular Diagnostic Techniques/methods , Viral Tropism , Virology/methods , Genotype , HIV/genetics , HIV/isolation & purification , Humans , env Gene Products, Human Immunodeficiency Virus/genetics
20.
J Antimicrob Chemother ; 66(4): 890-5, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21393136

ABSTRACT

OBJECTIVES: Maraviroc is the first licensed chemokine co-receptor 5 (CCR5) co-receptor antagonist in clinical practice. It is currently being used in patients harbouring exclusively CCR5-tropic virus. The objective of the study was to investigate the impact of maraviroc on viruses with different co-receptor preferences in a patient with a dual/mixed (D/M) infection. METHODS: We present a case report of an HIV-1 patient infected with a D/M virus population. Co-receptor tropism was determined by phenotypic and genotypic tests. Biological clones from pre- and post-maraviroc therapy were generated. Tropism of these infectious clones was investigated in U373-MAGI cells expressing CD4+ CCR5+ or CD4+ CXCR4+. Maraviroc susceptibility and viral replication were determined using donor peripheral blood mononuclear cells (PBMCs). RESULTS: In-depth clonal genotypic analysis revealed the presence of both R5-tropic variants and X4-tropic viruses before the start of maraviroc. During maraviroc therapy all R5-predicted viruses were suppressed. Phenotypic analyses revealed that all biological clones before maraviroc therapy could infect both CCR5- and CXCR4-bearing U373-MAGI cells, demonstrating dual tropism. The baseline biological clones preferentially infected the CCR5 cell line and were fully susceptible to maraviroc in PBMCs (dual-R5). In contrast, during maraviroc therapy the dual-R5-tropic viruses were replaced by more X4-tropic viruses (dual-X4), which could not be inhibited by maraviroc. CONCLUSIONS: This case report demonstrates that dual-tropic viruses, capable of using both co-receptors in phenotypic assays, can be inhibited by maraviroc if they have a CCR5 co-receptor preference in vivo.


Subject(s)
Anti-HIV Agents/administration & dosage , Cyclohexanes/administration & dosage , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , Triazoles/administration & dosage , Viral Tropism , Anti-HIV Agents/pharmacology , Cell Line , Cyclohexanes/pharmacology , Genotype , HIV-1/physiology , Humans , Male , Maraviroc , Middle Aged , Treatment Outcome , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...