Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732737

ABSTRACT

Block copolymer (BCP) surfaces permit an exquisite level of nanoscale control in biomolecular assemblies solely based on self-assembly. Owing to this, BCP-based biomolecular assembly represents a much-needed, new paradigm for creating nanobiosensors and nanobiomaterials without the need for costly and time-consuming fabrication steps. Research endeavors in the BCP nanobiotechnology field have led to stimulating results that can promote our current understanding of biomolecular interactions at a solid interface to the never-explored size regimes comparable to individual biomolecules. Encouraging research outcomes have also been reported for the stability and activity of biomolecules bound on BCP thin film surfaces. A wide range of single and multicomponent biomolecules and BCP systems has been assessed to substantiate the potential utility in practical applications as next-generation nanobiosensors, nanobiodevices, and biomaterials. To this end, this Review highlights pioneering research efforts made in the BCP nanobiotechnology area. The discussions will be focused on those works particularly pertaining to nanoscale surface assembly of functional biomolecules, biomolecular interaction properties unique to nanoscale polymer interfaces, functionality of nanoscale surface-bound biomolecules, and specific examples in biosensing. Systems involving the incorporation of biomolecules as one of the blocks in BCPs, i.e., DNA-BCP hybrids, protein-BCP conjugates, and isolated BCP micelles of bioligand carriers used in drug delivery, are outside of the scope of this Review. Looking ahead, there awaits plenty of exciting research opportunities to advance the research field of BCP nanobiotechnology by capitalizing on the fundamental groundwork laid so far for the biomolecular interactions on BCP surfaces. In order to better guide the path forward, key fundamental questions yet to be addressed by the field are identified. In addition, future research directions of BCP nanobiotechnology are contemplated in the concluding section of this Review.

2.
Biosensors (Basel) ; 14(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38392004

ABSTRACT

Mechanical strain has been shown to be a versatile and tunable means to control various properties of nanomaterials. In this work, we investigate how strain applied to individual ZnO nanorods (NRs) can affect the fluorescence signals originated from external sources of bioanalytes, which are subsequently coupled and guided onto the NRs. Specifically, we determine how factors such as the NR length and protein concentration can influence the strain-induced changes in the waveguided fluorescence intensity along the NRs. We employ a protein of tumor necrosis factor-α (TNF-α) and a fluorophore-labeled antibody in a model immunoassay reaction, after which Alexa488-TNF-α immunocomplex is formed on ZnO NRs. We elucidate the relationships between the types as well as amounts of strain on the NRs and the fluorescence intensity originated from the Alexa488-TNF-α immunocomplexes. We show that tensile (compressive) strain applied to the NR leads to an increase (decrease) in the waveguided fluorescence signals. By assessing important optical phenomena such as fluorescence intensification on nanorod ends (FINE) and degree of FINE (DoF), we confirm their linear dependence with both the types and amounts of strain. Furthermore, the strain-induced changes in both FINE and DoF are found to be independent of protein concentration. We determine that NR length plays a critical role in obtaining high strain-dependence of the measured fluorescence signals. Particularly, we ascertain that longer NRs yield larger changes in both FINE and DoF in response to the applied strain, relative to shorter ones. In addition, longer NRs permit higher linear correlation between the protein concentration and the waveguided fluorescence intensity. These outcomes provide valuable insight into exploiting strain to enhance the detection of optical signals from bioanalytes, thus enabling their quantifications even at ultra-trace levels. Coupled with the use of individual ZnO NRs demonstrated in our measurements, this work may contribute to the development of a miniaturized, highly sensitive biosensor whose signal transduction is best optimized by the application of strain.


Subject(s)
Nanostructures , Nanotubes , Zinc Oxide , Tumor Necrosis Factor-alpha , Antibodies
3.
Nanomaterials (Basel) ; 12(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36296748

ABSTRACT

In this work, we examine how strain exerted on individual ZnO nanorods (NRs) can influence the fluorescence signals that are emitted from fluorophore molecules and subsequently coupled into and guided along the NR. We elucidate the relationships between the incremental levels of compressive and tensile strain on the NRs and measured fluorescence intensity of a model fluorophore, rhodamine 6G (R6G), as a function of the position on the NRs. We reveal that compressive strain on the NRs leads to a decrease in the guided fluorescence signal, while tensile strain leads to an increase in the fluorescence intensity. Compared to an unstrained state, approximately 35% decrease (increase) in R6G fluorescence intensity was observed from ZnO NRs when they were under compressive strain of -14% (tensile strain of +10%). Further, our systematic acquisition of the incremental addition of uniaxial strain result in a linear relationship of the coupled fluorescence signal and the amount of applied strain. The degree of fluorescence intensification on nanorod ends (DoF), which is a quantitative indicator for the amount of R6G signals coupled into and waveguided to the NR ends compared to those on the main body, also exhibits a linear relationship with strain. These outcomes, in turn, demonstrate that strain alters the waveguiding capabilities of ZnO NRs in a predictable manner, which can be exploited to modulate and optimize fluorescence and other light signals emitted by a nearby source. Considering the wide utility of ZnO NRs in photonics, optoelectronics, and sensors, insights from our study may be highly valuable to effectively controlling and enhancing optical signals from chemical and biological analytes through strain.

SELECTION OF CITATIONS
SEARCH DETAIL