Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054926

ABSTRACT

Rice is a major staple crop worldwide. However, the occurrence of rice diseases during cultivation poses a significant challenge to achieving optimal yields. Among the major pathogens, Pythium species, which cause seedling blight, are of particular concern. Pythium infects rice roots through zoospores, mycelia, or oospores, leading to root rot, stunting, yellowing, and ultimately seedling damping-off. While many disease resistance-related genes have been reported in rice, only very limited research has been associated with resistance to Pythium infection. In this study, we aimed to establish a rapid screening system to identify rice lines that are resistant or susceptible to Pythium pathogen in rice nurseries. We conducted evaluations on important factors, including virulence, inoculation method, seed soaking period, and the measurement of disease severity. As a result, we successfully developed a screening system that allows for high-throughput and rapid screening of the Taiwan Rice Insertional Mutant (TRIM) library for mutant lines exhibiting resistance to P. arrhenomanes. Furthermore, we identified a slightly resistant TRIM line and explored potential genes encoding endglucanase-1 precursor and malonyl-CoA decarboxylase that may be involved in conferring resistance to P. arrhenomanes.

2.
Nutrients ; 15(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37375705

ABSTRACT

One-third of patients with end-stage chronic kidney disease (CKD) experience diabetic nephropathy (DN), which worsens the progression of renal dysfunction. However, preventive measures for DN are lacking. Lactobacillus acidophilus TYCA06, Bifidobacterium longum subsp. infantis BLI-02, and Bifidobacterium bifidum VDD088 probiotic strains have been demonstrated to delay CKD progression. This study evaluated their biological functions to stabilize blood-glucose fluctuations and delay the deterioration of renal function. The db/db mice were used to establish a DN animal model. This was supplemented with 5.125 × 109 CFU/kg/day (high dose) or 1.025 × 109 CFU/kg/day (low dose) mixed with probiotics containing TYCA06, BLI-02, and VDD088 for 8 weeks. Blood urea nitrogen (BUN), serum creatinine, blood glucose, and urine protein were analyzed. Possible mechanisms underlying the alleviation of DN symptoms by probiotic strains were evaluated through in vitro tests. Animal experiments revealed that BUN, serum creatinine, and blood glucose upon probiotic administration were significantly lower than in the control group. The rate of change of urine protein decreased significantly, and blood pressure, glucose tolerance, and renal fibrosis were improved. In vitro testing indicated that TYCA06 and BLI-02 significantly increased acetic acid concentration. TYCA06, BLI-02, and VDD088 were associated with better antioxidation, anti-inflammation, and glucose consumption activities relative to the control. A combination of the probiotics TYCA06, BLI-02, and VDD088 attenuated renal function deterioration and improved blood-glucose fluctuation in a diabetes-induced CKD mouse model.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Probiotics , Renal Insufficiency, Chronic , Mice , Animals , Blood Glucose/metabolism , Blood Pressure , Creatinine , Glucose , Probiotics/therapeutic use , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...