Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Sci Rep ; 14(1): 11713, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778177

ABSTRACT

The development of neurons is regulated by several spatiotemporally changing factors, which are crucial to give the ability of neurons to form functional networks. While external physical stimuli may impact the early developmental stages of neurons, the medium and long-term consequences of these influences have yet to be thoroughly examined. Using an animal model, this study focuses on the morphological and transcriptome changes of the hippocampus that may occur as a consequence of fetal ultrasound examination. We selectively labeled CA1 neurons of the hippocampus with in-utero electroporation to analyze their morphological features. Furthermore, certain samples also went through RNA sequencing after repetitive ultrasound exposure. US exposure significantly changed several morphological properties of the basal dendritic tree. A notable increase was also observed in the density of spines on the basal dendrites, accompanied by various alterations in individual spine morphology. Transcriptome analysis revealed several up or downregulated genes, which may explain the molecular background of these alterations. Our results suggest that US-derived changes in the dendritic trees of CA1 pyramidal cells might be connected to modification of the transcriptome of the hippocampus and may lead to an increased dendritic input.


Subject(s)
CA1 Region, Hippocampal , Dendrites , Transcriptome , Animals , CA1 Region, Hippocampal/metabolism , Dendrites/metabolism , Female , Pregnancy , Pyramidal Cells/metabolism , Mice , Hippocampus/metabolism , Gene Expression Profiling , Dendritic Spines/metabolism , Ultrasonography, Prenatal
2.
Front Cell Neurosci ; 18: 1382465, 2024.
Article in English | MEDLINE | ID: mdl-38784707

ABSTRACT

The endogenous cannabinoid 2-arachidonoylglycerol (2-AG) influences neurotransmission in the central nervous system mainly by activating type 1 cannabinoid receptor (CB1). Following its release, 2-AG is broken down by hydrolases to yield arachidonic acid, which may subsequently be metabolized by cyclooxygenase-2 (COX-2). COX-2 converts arachidonic acid and also 2-AG into prostanoids, well-known inflammatory and pro-nociceptive mediators. Here, using immunohistochemical and biochemical methods and pharmacological manipulations, we found that reactive spinal astrocytes and microglia increase the expression of COX-2 and the production of prostaglandin E2 when exposed to 2-AG. Both 2-AG and PGE2 evoke calcium transients in spinal astrocytes, but PGE2 showed 30% more efficacy and 55 times more potency than 2-AG. Unstimulated spinal dorsal horn astrocytes responded to 2-AG with calcium transients mainly through the activation of CB1. 2-AG induced exaggerated calcium transients in reactive astrocytes, but this increase in the frequency and area under the curve of calcium signals was only partially dependent on CB1. Instead, aberrant calcium transients were almost completely abolished by COX-2 inhibition. Our results suggest that both reactive spinal astrocytes and microglia perform an endocannabinoid-prostanoid switch to produce PGE2 at the expense of 2-AG. PGE2 in turn is responsible for the induction of aberrant astroglial calcium signals which, together with PGE2 production may play role in the development and maintenance of spinal neuroinflammation-associated disturbances such as central sensitization.

3.
Sci Rep ; 14(1): 7314, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538675

ABSTRACT

This research presents an unsupervised learning approach for interpreting well-log data to characterize the hydrostratigraphical units within the Quaternary aquifer system in  Debrecen area, Eastern Hungary. The study applied factor analysis (FA) to extract factor logs from spontaneous potential (SP), natural gamma ray (NGR), and resistivity (RS) logs and correlate it to the petrophysical and hydrogeological parameters of shale volume and hydraulic conductivity. This research indicated a significant exponential relationship between the shale volume and the scaled first factor derived through factor analysis. As a result, a universal FA-based equation for shale volume estimation is derived that shows a close agreement with the deterministic shale volume estimation. Furthermore, the first scaled factor is correlated to the decimal logarithm of hydraulic conductivity estimated with the Csókás method. Csókás method is modified from the Kozeny-Carman equation that continuously estimates the hydraulic conductivity. FA and Csókás method-based estimations showed high similarity with a correlation coefficient of 0.84. The use of factor analysis provided a new strategy for geophysical well-logs interpretation that bridges the gap between traditional and data-driven machine learning techniques. This approach is beneficial in characterizing heterogeneous aquifer systems for successful groundwater resource development.

4.
Neuropharmacology ; 247: 109858, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286189

ABSTRACT

The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".


Subject(s)
Neurons , Spinal Cord Dorsal Horn , Interneurons/physiology , Posterior Horn Cells
6.
Sci Rep ; 14(1): 1008, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200086

ABSTRACT

This study assessed the environmental and health risks associated with heavy metals in the water resources of Egypt's northwestern desert. The current approaches included the Spearman correlation matrix, principal component analysis, and cluster analysis to identify pollution sources and quality-controlling factors. Various indices (HPI, MI, HQ, HI, and CR) were applied to evaluate environmental and human health risks. Additionally, the Monte Carlo method was employed for probabilistic carcinogenic and non-carcinogenic risk assessment via oral and dermal exposure routes in adults and children. Notably, all water resources exhibited high pollution risks with HPI and MI values exceeding permissible limits (HPI > 100 and MI > 6), respectively. Furthermore, HI oral values indicated significant non-carcinogenic risks to both adults and children, while dermal contact posed a high risk to 19.4% of samples for adults and 77.6% of samples for children (HI > 1). Most water samples exhibited CR values exceeding 1 × 10-4 for Cd, Cr, and Pb, suggesting vulnerability to carcinogenic effects in both age groups. Monte Carlo simulations reinforced these findings, indicating a significant carcinogenic impact on children and adults. Consequently, comprehensive water treatment measures are urgently needed to mitigate carcinogenic and non-carcinogenic health risks in Siwa Oasis.


Subject(s)
Groundwater , Metals, Heavy , Adult , Child , Humans , Monte Carlo Method , Water Resources , Metals, Heavy/toxicity , Carcinogenesis , Carcinogens , Risk Assessment
7.
Aging Cell ; 22(9): e13939, 2023 09.
Article in English | MEDLINE | ID: mdl-37489544

ABSTRACT

Slow inward currents (SICs) are known as excitatory events of neurons elicited by astrocytic glutamate via activation of extrasynaptic NMDA receptors. By using slice electrophysiology, we tried to provide evidence that SICs can elicit synaptic plasticity. Age dependence of SICs and their impact on synaptic plasticity was also investigated in both on murine and human cortical slices. It was found that SICs can induce a moderate synaptic plasticity, with features similar to spike timing-dependent plasticity. Overall SIC activity showed a clear decline with aging in humans and completely disappeared above a cutoff age. In conclusion, while SICs contribute to a form of astrocyte-dependent synaptic plasticity both in mice and humans, this plasticity is differentially affected by aging. Thus, SICs are likely to play an important role in age-dependent physiological and pathological alterations of synaptic plasticity.


Subject(s)
Astrocytes , Neocortex , Mice , Humans , Animals , Astrocytes/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Neocortex/metabolism , Neurons/metabolism , Neuronal Plasticity , Synapses/metabolism
8.
Biol Futur ; 74(1-2): 183-197, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37149820

ABSTRACT

Cryptogams of ten urban flatroofs, contrasting in their age and size, were studied between 2016 and 2018. Siliceous (bituminous felt, gravel, brick) and calcareous (concrete) substrata occurred at each site. Microclimate (T, RH) at two sites of contrasting shading was monitored from September 2016 to January 2017. Biomass of two differently aged, exposed flatroofs was sampled in October 2018. Taxa of Cladonia and Xanthoparmelia have been identified by spot tests and HPTLC. A total of 61 taxa (25 bryophytes, 36 lichens), mostly widespread synanthropic species, have been detected with an explicit difference of species composition between shaded and exposed sites. Floristically interesting species included acidophilous bryophytes (Hedwigia ciliata, Racomitrium canescens) and lichens (Xanthoparmelia conspersa, Stereocaulon tomentosum) of montane character. The most widespread lichen is Cladonia rei which accounted for a significant part of the biomass at selected sites. Species-area curves for bryophytes at exposed sites have become saturated at 100-150 m2. In contrast, saturation of lichen diversity has not been reached even at the largest sites. Flatroofs with traditional roofing techniques can harbour relatively diverse microhabitats and species-rich synanthropic vegetation. It is urgent to study these sites before renovation with modern roofing techniques eliminates them. Diversification of urban surroundings is possible in the future via application of various substrats in renovated and newly constructed roofs.


Subject(s)
Lichens , Hungary , Biomass
9.
Front Mol Neurosci ; 16: 1115685, 2023.
Article in English | MEDLINE | ID: mdl-36969557

ABSTRACT

Objective: Intense inflammation may result in pain, which manifests as spinal central sensitization. There is growing evidence that purinergic signaling plays a pivotal role in the orchestration of pain processing. Over the last decade the ionotropic P2X purino receptor 4 (P2X4) got into spotlight in neuropathic disorders, however its precise spinal expression was scantily characterized during inflammatory pain. Thus, we intended to analyze the receptor distribution within spinal dorsal horn and lumbar dorsal root ganglia (DRG) of rats suffering in inflammatory pain induced by complete Freund adjuvant (CFA). Methods: CFA-induced peripheral inflammation was validated by mechanical and thermal behavioral tests. In order to ensure about the putative alteration of spinal P2X4 receptor gene expression qPCR reactions were designed, followed by immunoperoxidase and Western blot experiments to assess changes at a protein level. Colocalization of P2X4 with neuronal and glial markers was investigated by double immunofluorescent labelings, which were subsequently analyzed with IMARIS software. Transmission electronmicroscopy was applied to study the ultrastructural localization of the receptor. Concurrently, in lumbar DRG cells similar methodology has been carried out to complete our observations. Results: The figures of mechanical and thermal behavioral tests proved the establishment of CFA-induced inflammatory pain. We observed significant enhancement of P2X4 transcript level within the spinal dorsal horn 3 days upon CFA administration. Elevation of P2X4 immunoreactivity within Rexed lamina I-II of the spinal gray matter was synchronous with mRNA expression, and confirmed by protein blotting. According to IMARIS analysis the robust protein increase was mainly detected on primary afferent axonterminals and GFAP-labelled astrocyte membrane compartments, but not on postsynaptic dendrites was also validated ultrastructurally within the spinal dorsal horn. Furthermore, lumbar DRG analysis demonstrated that peptidergic and non-peptidergic nociceptive subsets of ganglia cells were also abundantly positive for P2X4 receptor in CFA model. Conclusion: Here we provide novel evidence about involvement of neuronal and glial P2X4 receptor in the establishment of inflammatory pain.

10.
J Neurosci ; 43(18): 3245-3258, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36948583

ABSTRACT

Mirror-image pain arises from pathologic alterations in the nociceptive processing network that controls functional lateralization of the primary afferent input. Although a number of clinical syndromes related to dysfunction of the lumbar afferent system are associated with the mirror-image pain, its morphophysiological substrate and mechanism of induction remain poorly understood. Therefore, we used ex vivo spinal cord preparation of young rats of both sexes to study organization and processing of the contralateral afferent input to the neurons in the major spinal nociceptive projection area Lamina I. We show that decussating primary afferent branches reach contralateral Lamina I, where 27% of neurons, including projection neurons, receive monosynaptic and/or polysynaptic excitatory drive from the contralateral Aδ-fibers and C-fibers. All these neurons also received ipsilateral input, implying their involvement in the bilateral information processing. Our data further show that the contralateral Aδ-fiber and C-fiber input is under diverse forms of inhibitory control. Attenuation of the afferent-driven presynaptic inhibition and/or disinhibition of the dorsal horn network increased the contralateral excitatory drive to Lamina I neurons and its ability to evoke action potentials. Furthermore, the contralateral Aßδ-fibers presynaptically control ipsilateral C-fiber input to Lamina I neurons. Thus, these results show that some lumbar Lamina I neurons are wired to the contralateral afferent system whose input, under normal conditions, is subject to inhibitory control. A pathologic disinhibition of the decussating pathways can open a gate controlling contralateral information flow to the nociceptive projection neurons and, thus, contribute to induction of hypersensitivity and mirror-image pain.SIGNIFICANCE STATEMENT We show that contralateral Aδ-afferents and C-afferents supply lumbar Lamina I neurons. The contralateral input is under diverse forms of inhibitory control and itself controls the ipsilateral input. Disinhibition of decussating pathways increases nociceptive drive to Lamina I neurons and may cause induction of contralateral hypersensitivity and mirror-image pain.


Subject(s)
Spinal Cord Dorsal Horn , Spinal Cord , Female , Male , Rats , Animals , Pain , Nerve Fibers, Unmyelinated/physiology , Interneurons , Nociceptors/physiology , Neurons, Afferent/physiology , Afferent Pathways/physiology
11.
Biomedicines ; 11(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36672635

ABSTRACT

Hidradenitis suppurativa (HS) is a Th1/17-driven inflammatory skin disease of the apocrine gland-rich (AGR) skin regions, where keratinocytes seem to be the crucial drivers of the initial pathogenic steps. However, the possible role of permeability barrier alteration in activating keratinocytes during HS development has not been clarified. We compared the major permeability barrier elements of non-lesional HS (HS-NL; n = 10) and lesional HS (HS-L; n = 10) skin with healthy AGR regions (n = 10) via RT-qPCR and immunohistochemistry. Stratum corneum components related to cornified envelope formation, corneocyte desquamation and (corneo)desmosome organization were analyzed along with tight junction molecules and barrier alarmins. The permeability barrier function was also investigated with transepidermal water loss (TEWL) measurements (n = 16). Junction structures were also visualized using confocal microscopy. At the gene level, none of the investigated molecules were significantly altered in HS-NL skin, while 11 molecules changed significantly in HS-L skin versus control. At the protein level, the investigated molecules were similarly expressed in HS-NL and AGR skin. In HS-L skin, only slight changes were detected; however, differences did not show a unidirectional alteration, as KRT1 and KLK5 were detected in decreased levels, and KLK7, KRT6 and DSG1 in increased levels. No significant differences in TEWL or the expression of junction structures were assessed. Our findings suggest that the permeability barrier is not significantly damaged in HS skin and permeability barrier alterations are not the driver factors of keratinocyte activation in this disease.

12.
Heliyon ; 8(11): e11308, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36353162

ABSTRACT

Groundwater has recently been considered one of the primary sources of water supply in Sudan. However, groundwater quality is continuously degraded due to overexploitation and long-term agricultural operations. The fossilized Cretaceous Nubian sandstone is the principal aquifer in the study area. This research aims to determine the major factors influencing groundwater quality and detect the suitability of groundwater for drinking and irrigation purposes by integrating hydrochemical and multivariate statistical methods. Hydrochemical plots such as Piper, Chadha, and Durov diagrams were applied to detect the groundwater facies and hydrochemical processes controlling the groundwater quality. They indicated Ca-Mg-HCO3 water type as a dominant groundwater facies followed by Na-HCO3 and Na-Cl types. Gibbs plots suggested that the dissolution of the minerals is the main factor influencing the water quality. The results of the Gibbs plot were further interpreted using saturation indices (SI). The SI values indicated that aragonite, calcite, and dolomite precipitated respectively in 58.33%, 75%, and 75% of groundwater samples. Multivariate statistical analyses, including Pearson's correlation analysis, hierarchical cluster analysis (HCA), and principal component analyses (PCA), were jointly employed to identify the structure of water quality data and deduce the main factors controlling groundwater quality. The statistical analysis revealed the effect of the physical and human-induced activities as the main factors influencing groundwater chemistry. These factors are rock-water interaction, agricultural practice, and organic contamination from septic tanks. Further, the suitability of groundwater for irrigation is determined using sodium adsorption ratio (SAR) and sodium percent (Na+%) indices. They carefully indicated that 75% of the groundwater samples in the study area are excellent for irrigation except for some sample location where the salinity hazard is stimulated by ion exchange. This integrated approach was effective in calibrating water quality assessment methodologies. The current research concluded that the implication of a groundwater quality monitoring scheme is crucial to ensure water supply sustainability in north Bahri city.

13.
J Comp Neurol ; 530(18): 3270-3287, 2022 12.
Article in English | MEDLINE | ID: mdl-36094014

ABSTRACT

Our knowledge about the detailed wiring of neuronal circuits in the spinal dorsal horn (DH), where initial sensory processing takes place, is still very sparse. While a substantial amount of data is available on the somatodendritic morphology of DH neurons, the laminar and segmental distribution patterns and consequential function of individual axons are much less characterized. In the present study, we fully reconstructed the axonal and dendritic processes of 10 projection neurons (PNs) and 15 interneurons (INs) in lamina I of the rat, to reveal quantitative differences in their distribution. We also performed whole-cell patch-clamp recordings to test the predicted function of certain axon collaterals. In line with our earlier qualitative description, we found that lamina I INs in the lateral aspect of the superficial DH send axon collaterals toward the medial part and occupy mostly laminae I-III, providing anatomical basis for a lateromedial flow of information within the DH. Local axon collaterals of PNs were more extensively distributed including dorsal commissural axon collaterals that might refer to those reported earlier linking the lateral aspect of the left and right DHs. PN collaterals dominated the dorsolateral funiculus and laminae IV-VI, suggesting propriospinal and ventral connections. Indeed, patch-clamp recordings confirmed the existence of a dorsoventral excitatory drive upon activation of neurokinin-1 receptors that, although being expressed in various lamina I neurons, are specifically enriched in PNs. In summary, lamina I PNs and INs have almost identical dendritic input fields, while their segmental axon collateral distribution patterns are distinct. INs, whose somata reside in lamina I, establish local connections, may show asymmetry, and contribute to bridging the medial and lateral halves of the DH. PNs, on the other hand, preferably relay their integrated dendritic input to deeper laminae of the spinal gray matter where it might be linked to other ascending pathways or the premotor network, resulting in a putative direct contribution to the nociceptive withdrawal reflex.


Subject(s)
Receptors, Neurokinin-1 , Spinal Cord , Rats , Animals , Axons/physiology , Interneurons , Posterior Horn Cells , Neurons/physiology , Spatial Analysis , Perception
14.
Front Neurosci ; 16: 803356, 2022.
Article in English | MEDLINE | ID: mdl-35368285

ABSTRACT

Neuronal differentiation and synaptogenesis are regulated by precise orchestration of intrinsic and extrinsic chemical and mechanical factors throughout all developmental steps critical for the assembly of neurons into functional circuits. While ultrasound is known to alter neuronal migration and activity acutely, its chronic effect on neuronal behavior or morphology is not well characterized. Furthermore, higher-frequency (3-5 MHz) ultrasound (HFU) is extensively used in gynecological practice for imaging, and while it has not been shown harmful for the developing brain, it might be associated with mild alterations that may have functional consequences. To shed light on the neurobiological effects of HFU on the developing brain, we examined cortical pyramidal cell morphology in a transgenic mouse model, following a single and short dose of high-frequency ultrasound. Layer V neurons in the retrosplenial cortex of mouse embryos were labeled with green and red fluorescent proteins by in utero electroporation at the time of their appearance (E14.5). At the time of their presumptive arrival to layer V (E18.5), HFU stimulation was performed with parameters matched to those used in human prenatal examinations. On the third postnatal day (P3), basic morphometric analyses were performed on labeled neurons reconstructed with Neurolucida. Low-intensity HFU-treated cells showed significantly increased dendritic branching compared to control (non-stimulated) neurons and showed elevated c-fos immunoreactivity. Labeled neurons were immunopositive for the mechanosensitive receptor TRPC4 at E18.5, suggesting the role of this receptor and the associated signaling pathways in the effects of HFU stimulation.

15.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35328599

ABSTRACT

Burn injury is a trauma resulting in tissue degradation and severe pain, which is processed first by neuronal circuits in the spinal dorsal horn. We have recently shown that in mice, excitatory dynorphinergic (Pdyn) neurons play a pivotal role in the response to burn-injury-associated tissue damage via histone H3.1 phosphorylation-dependent signaling. As Pdyn neurons were mostly associated with mechanical allodynia, their involvement in thermonociception had to be further elucidated. Using a custom-made AAV9_mutH3.1 virus combined with the CRISPR/cas9 system, here we provide evidence that blocking histone H3.1 phosphorylation at position serine 10 (S10) in spinal Pdyn neurons significantly increases the thermal nociceptive threshold in mice. In contrast, neither mechanosensation nor acute chemonociception was affected by the transgenic manipulation of histone H3.1. These results suggest that blocking rapid epigenetic tagging of S10H3 in spinal Pdyn neurons alters acute thermosensation and thus explains the involvement of Pdyn cells in the immediate response to burn-injury-associated tissue damage.


Subject(s)
Burns , Histones , Animals , Burns/genetics , CRISPR-Cas Systems/genetics , Histones/genetics , Histones/metabolism , Hyperalgesia/metabolism , Mice , Mutagenesis , Neurons/metabolism , Spinal Cord/metabolism
16.
Pain ; 163(2): 362-375, 2022 02 01.
Article in English | MEDLINE | ID: mdl-33990106

ABSTRACT

ABSTRACT: Afferents from the C2 spinal nerve (SN) and trigeminal nerve (TN) innervate neighboring cranial territories, and their convergence on the upper cervical dorsal horn neurons represents neural substrate of pain referral in primary headache disorders. Unfortunately, little is known about trigeminocervical input to the major spinal nociceptive projection area lamina I. Here, we used ex vivo brainstem-cervical cord preparation for the visually guided whole-cell recording from the upper cervical lamina I neurons. We show that 50% of them receive convergent monosynaptic input from both nerves, whereas 35% and 11% of neurons receive specific supply from the C2 SN and TN, respectively. Altogether, 10 distinct patterns of synaptic input from the C2 SN and TN to lamina I neurons could be identified. Although stimulation of both nerves evoked excitatory/inhibitory responses, more numerous pure inhibitory inputs arose from the TN. We show that cervical and trigeminal nociceptors converge on to lamina I projection and inhibitory neurons. Thus, trigeminocervical input in lamina I is processed in both nerve-specific and convergent circuitries. Afferent convergence on to inhibitory interneurons serves as a feedforward mechanism balancing excitatory drive to projection neurons. Disruption of this balance may cause pain in primary headache syndromes.


Subject(s)
Neurons, Afferent , Nociception , Afferent Pathways/physiology , Neurons , Neurons, Afferent/physiology , Nociceptors/physiology , Spinal Cord Dorsal Horn/physiology
17.
Int J Mol Sci ; 22(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34768839

ABSTRACT

Our earlier findings revealed that interleukin-1 receptor type-1 (IL-1R1) was overexpressed in spinal neurons, and IL-1R1-deficient mice showed significant attenuation of thermal and mechanical allodynia during the course of the Complete Freund adjuvant (CFA)-induced persistent pain model. In the present study, we found that a ligand of IL-1R1, termed interleukin-1ß (IL-1ß), is also significantly overexpressed at the peak of mechanical pain sensitivity in the CFA-evoked pain model. Analysis of cellular distribution and modeling using IMARIS software showed that in the lumbar spinal dorsal horn, IL-1ß is significantly elevated by astrocytic expression. Maturation of IL-1ß to its active form is facilitated by the formation of the multiprotein complex called inflammasome; thus, we tested the expression of NOD-like receptor proteins (NLRPs) in astrocytes. At the peak of mechanical allodynia, we found expression of the NLRP2 inflammasome sensor and its significantly elevated co-localization with the GFAP astrocytic marker, while NLRP3 was moderately present and NLRP1 showed total segregation from the astrocytic profiles. Our results indicate that peripheral CFA injection induces NLRP2 inflammasome and IL-1ß expression in spinal astrocytes. The release of mature IL-1ß can contribute to the maintenance of persistent pain by acting on its neuronally expressed receptor, which can lead to altered neuronal excitability.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Astrocytes/metabolism , Hyperalgesia/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Astrocytes/physiology , Freund's Adjuvant/pharmacology , Gene Expression/genetics , Hyperalgesia/physiopathology , Inflammasomes/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Male , Neurons/metabolism , Pain/metabolism , Pain/physiopathology , Pain Threshold/physiology , Rats , Rats, Inbred WKY , Receptors, Interleukin-1 Type I/metabolism , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism
18.
Int J Mol Sci ; 22(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34638769

ABSTRACT

The chemical milieu, microbiota composition, and immune activity show prominent differences in distinct healthy skin areas. The objective of the current study was to compare the major permeability barrier components (stratum corneum and tight junction (TJ)), investigate the distribution of (corneo)desmosomes and TJs, and measure barrier function in healthy sebaceous gland-rich (SGR), apocrine gland-rich (AGR), and gland-poor (GP) skin regions. Molecules involved in cornified envelope (CE) formation, desquamation, and (corneo)desmosome and TJ organization were investigated at the mRNA and protein levels using qRT-PCR and immunohistochemistry. The distribution of junction structures was visualized using confocal microscopy. Transepidermal water loss (TEWL) functional measurements were also performed. CE intracellular structural components were similarly expressed in gland-rich (SGR and AGR) and GP areas. In contrast, significantly lower extracellular protein levels of (corneo)desmosomes (DSG1 and CDSN) and TJs (OCLN and CLDN1) were detected in SGR/AGR areas compared to GP areas. In parallel, kallikrein proteases were significantly higher in gland-rich regions. Moreover, gland-rich areas were characterized by prominently disorganized junction structures ((corneo)desmosomes and TJs) and significantly higher TEWL levels compared to GP skin, which exhibited a regular distribution of junction structures. According to our findings, the permeability barrier of our skin is not uniform. Gland-rich areas are characterized by weaker permeability barrier features compared with GP regions. These findings have important clinical relevance and may explain the preferred localization of acantholytic skin diseases on gland-rich skin regions (e.g., Pemphigus foliaceus, Darier's disease, and Hailey-Hailey disease).


Subject(s)
Acantholysis/metabolism , Epidermis/metabolism , Sebaceous Glands/metabolism , Tight Junctions/metabolism , Acantholysis/pathology , Adult , Aged , Epidermis/pathology , Female , Humans , Male , Middle Aged , Permeability , Sebaceous Glands/pathology , Tight Junctions/pathology
19.
Int J Mol Sci ; 22(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669046

ABSTRACT

The phosphorylation of serine 10 in histone 3 (p-S10H3) has recently been demonstrated to participate in spinal nociceptive processing. However, superficial dorsal horn (SDH) neurons involved in p-S10H3-mediated nociception have not been fully characterized. In the present work, we combined immunohistochemistry, in situ hybridization with the retrograde labeling of projection neurons to reveal the subset of dorsal horn neurons presenting an elevated level of p-S10H3 in response to noxious heat (60 °C), causing burn injury. Projection neurons only represented a small percentage (5%) of p-S10H3-positive cells, while the greater part of them belonged to excitatory SDH interneurons. The combined immunolabeling of p-S10H3 with markers of already established interneuronal classes of the SDH revealed that the largest subset of neurons with burn injury-induced p-S10H3 expression was dynorphin immunopositive in mice. Furthermore, the majority of p-S10H3-expressing dynorphinergic neurons proved to be excitatory, as they lacked Pax-2 and showed Lmx1b-immunopositivity. Thus, we showed that neurochemically heterogeneous SDH neurons exhibit the upregulation of p-S10H3 shortly after noxious heat-induced burn injury and consequential tissue damage, and that a dedicated subset of excitatory dynorphinergic neurons is likely a key player in the development of central sensitization via the p-S10H3 mediated pathway.


Subject(s)
Burns/metabolism , Histones/metabolism , Nociception/physiology , Pain/metabolism , Posterior Horn Cells/metabolism , Serine/metabolism , Spinal Cord/metabolism , Animals , Epigenesis, Genetic , Female , Immunohistochemistry , In Situ Hybridization , LIM-Homeodomain Proteins/metabolism , Male , Mice , Mice, Transgenic , PAX2 Transcription Factor/metabolism , Phosphorylation , Rats , Rats, Wistar , Spinal Cord/cytology , Spinal Cord/physiology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...