Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Physiol Neurobiol ; 215: 13-9, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25896285

ABSTRACT

Structural and functional longitudinal alterations of the lungs were followed in an emphysema model. Rats were treated with porcine pancreatic elastase (PPE, n=21) or saline (controls, C, n=19). Before the treatment and 3, 10, 21 and 105 days thereafter, absolute lung volumes (FRC, TLC and RV) and tissue mechanical parameters (elastance: H; damping: G) were determined. At 3, 21 and 105 days the lungs were fixed in subgroups of rats. From histological samples the equivalent diameter of airspaces (Dalv), elastin (Mec) and collagen densities were assessed. In the PPE group, FRC and RV were higher from 3 days after treatment compared to controls (p<0.001), while TLC exhibited a delayed increase. H and G decreased in the PPE group throughout the study (p<0.001). Higher Mec (p<0.001) and late-phase inflammation were observed at 105 days. We conclude that during the progression of emphysema, septal failures increase Dalv which decreases H; this reveals a strong structure-function relationship.


Subject(s)
Emphysema/drug therapy , Lung , Pancreatic Elastase/therapeutic use , Respiration/drug effects , Analysis of Variance , Animals , Body Weight/drug effects , Emphysema/pathology , Expiratory Reserve Volume/drug effects , Follow-Up Studies , Lung/drug effects , Lung/pathology , Lung/physiopathology , Plethysmography , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric , Time Factors , Total Lung Capacity/drug effects
2.
Am J Physiol Lung Cell Mol Physiol ; 303(7): L567-74, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22865550

ABSTRACT

The relation between the progression of chronic obstructive pulmonary disease (COPD) and exacerbations is unclear. Currently, no animal model of acute exacerbation of COPD (AECOPD) exists. The objectives of this study were to evaluate the effects of mechanical forces induced by deep inspirations (DIs) on short-term deterioration of lung structure and function to mimic AECOPD. At 2, 7, or 21 days after treatment with elastase, mice were ventilated with or without DIs (35 cmH(2)O airway pressure for 3 s, 2 times/min) for 1 h. Functional residual capacity (FRC) was measured with body plethysmography, and respiratory compliance, resistance, and hysteresivity were obtained via forced oscillations. From hematoxylin and eosin-stained sections, equivalent airspace diameters (D), alveolar wall thickness (W(t)), number of septal ruptures (N(sr)), and attachment density (A(d)) around airways were determined. FRC, compliance, and hysteresivity statistically significantly increased with time, and both increased due to DIs. Interestingly, DIs also had an effect on FRC, compliance, resistance, and hysteresivity in control mice. The development of emphysema statistically significantly increased D and W(t) in time, and the DIs caused subtle differences in D. At 21 days, the application of DIs changed the distribution of D, increased W(t) and N(sr), and decreased A(d). These results suggest that once a critical remodeling of the parenchyma has been reached, acute mechanical forces lead to irreversible changes in structure and function, mimicking COPD exacerbations. Thus, the acute application of DIs in mice with emphysema may serve as a useful model of AECOPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Emphysema/pathology , Pulmonary Emphysema/physiopathology , Airway Resistance/drug effects , Animals , Disease Models, Animal , Disease Progression , Lung Compliance/drug effects , Male , Mice , Mice, Inbred C57BL , Pancreatic Elastase/pharmacology , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Emphysema/chemically induced , Respiratory Function Tests
3.
J Appl Physiol (1985) ; 112(11): 1932-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22442024

ABSTRACT

The aim of this study was to evaluate airway structure-function relations in elastase-induced emphysema in rats. Sprague-Dawley rats were treated intratracheally with 50 IU porcine pancreatic elastase (PPE, n = 8) or saline (controls, n = 6). Six weeks later, lung volumes [functional residual capacity (FRC), residual volume (RV), and total lung capacity (TLC)] and low-frequency impedance parameters (Newtonian resistance, R(N); tissue damping; tissue elastance, H) were measured, and tracheal sounds were recorded during slow inflation to TLC following in vivo degassing. The lungs were fixed and stained for standard morphometry, elastin, and collagen. In the PPE group, FRC and RV were higher [4.53 ± 0.7 (SD) vs. 3.28 ± 0.45 ml; P = 0.003 and 1.06 ± 0.35 vs. 0.69 ± 0.18 ml; P = 0.036, respectively], and H was smaller in the PPE-treated rats than in the controls (1,344 ± 216 vs. 2,178 ± 305 cmH(2)O/l; P < 0.001), whereas there was no difference in R(N). The average number of crackles per inflation was similar in the two groups; however, the crackle size distributions were different and the lower knee of the pressure-volume curves was higher in the PPE group. Microscopic images revealed different alveolar size distributions but similar bronchial diameters in the two groups. The treatment caused a slight but significant decrease in the numbers of alveolar attachments, no difference in elastin and slightly increased mean level and heterogeneity of collagen in the bronchial walls. These results suggest that tissue destruction did not affect the conventionally assessed airway resistance in this emphysema model, whereas the alterations in the recruitment dynamics can be an early manifestation of impaired airway function.


Subject(s)
Disease Models, Animal , Lung/pathology , Lung/physiopathology , Pulmonary Emphysema/pathology , Pulmonary Emphysema/physiopathology , Animals , Male , Rats , Rats, Sprague-Dawley , Time Factors
4.
J Appl Physiol (1985) ; 105(6): 1864-72, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18845778

ABSTRACT

Absolute lung volumes such as functional residual capacity, residual volume (RV), and total lung capacity (TLC) are used to characterize emphysema in patients, whereas in animal models of emphysema, the mechanical parameters are invariably obtained as a function of transrespiratory pressure (Prs). The aim of the present study was to establish a link between the mechanical parameters including tissue elastance (H) and airway resistance (Raw), and thoracic gas volume (TGV) in addition to Prs in a mouse model of emphysema. Using low-frequency forced oscillations during slow deep inflation, we tracked H and Raw as functions of TGV and Prs in normal mice and mice treated with porcine pancreatic elastase. The presence of emphysema was confirmed by morphometric analysis of histological slices. The treatment resulted in an increase in TGV by 51 and 44% and a decrease in H by 57 and 27%, respectively, at 0 and 20 cmH(2)O of Prs. The Raw did not differ between the groups at any value of Prs, but it was significantly higher in the treated mice at comparable TGV values. In further groups of mice, tracheal sounds were recorded during inflations from RV to TLC. All lung volumes but RV were significantly elevated in the treated mice, whereas the numbers and size distributions of inspiratory crackles were not different, suggesting that the airways were not affected by the elastase treatment. These findings emphasize the importance of absolute lung volumes and indicate that tissue destruction was not associated with airway dysfunction in this mouse model of emphysema.


Subject(s)
Lung Volume Measurements , Lung/physiology , Pancreatic Elastase , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/physiopathology , Respiratory Mechanics/physiology , Airway Resistance , Animals , Elasticity , Female , Lung/anatomy & histology , Mice , Mice, Inbred CBA , Respiratory Sounds , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...