Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Arch Med Sadowej Kryminol ; 73(4): 308-324, 2024.
Article in English, Polish | MEDLINE | ID: mdl-38662483

ABSTRACT

The aim of the study was to determine the components of measurement uncertainty in the concentration of alcohol in exhaled breath and to determine the state of sobriety at the time of incident. Based on the literature review and the authors' experience in providing opinions for law enforcement and the judiciary, the influence of various factors on the final interpretation of sobriety state is described on the basis of measurement uncertainty of breath analyzers, uncertainty of retrospective and prospective calculations, and uncertainty related to the conversion of alcohol concentrations detected during breath and blood tests. The paper pays particular attention to interpreting the concentrations of ethanol in exhaled breath close to the legal limits of the state of sobriety and the state after alcohol use, or the state after alcohol use and the state of insobriety. Analyzing the results of an exhaled breath test concerning concentrations close to the values of 0.1 mg/dm3 and 0.25 mg/dm3, it is necessary to take into account the factors affecting the measurements obtained, including the measurement uncertainty of the determination of alcohol in exhaled breath, the processes of absorption, distribution and metabolism of ethyl alcohol, and the possibility of the presence of alcohol lingering in the oral cavity. The incorrect execution of measurements of the tested person's alcohol concentration is also a problematic issue. When determining sobriety state by means of retrospective and prospective calculations, it is important to remember that the uncertainty of the result is affected by a number of factors and depends, among other things, on the information provided by the suspect. Hence, the expert should draw conclusions particularly cautiously and any overestimation or underestimation of the components of uncertainty can lead to erroneous conclusions. Awareness of the uncertainties inherent in the results of a sobriety test or alcohol calculation allows for meaningful interpretation of test results and determination of the sobriety state of the person tested.


Subject(s)
Breath Tests , Ethanol , Humans , Breath Tests/methods , Ethanol/analysis , Driving Under the Influence/legislation & jurisprudence , Alcoholic Intoxication , Substance Abuse Detection/methods , Uncertainty , Exhalation , Alcohol Drinking
2.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542529

ABSTRACT

Members of the TaCKX gene family (GFM) encode oxidase/dehydrogenase cytokinin degrading enzymes (CKX), which play an important role in the homeostasis of phytohormones, affecting wheat development and productivity. Therefore, the objective of this investigation was to test how the expression patterns of the yield-related TaCKX genes and TaNAC2-5A (NAC2) measured in 7 days after pollination (DAP) spikes and the seedling roots of parents are inherited to apply this knowledge in the breeding process. The expression patterns of these genes were compared between parents and their F2 progeny in crosses of one mother with different paterns of awnless cultivars and reciprocal crosses of awned and awnless lines. We showed that most of the genes tested in the 7 DAP spikes and seedling roots of the F2 progeny showed paternal expression patterns in crosses of awnless cultivars as well as reciprocal crosses of awned and awnless lines. Consequently, the values of grain yield in the F2 progeny were similar to the pater; however, the values of seedling root mass were similar to the mother or both parents. The correlation analysis of TaCKX GFMs and NAC2 in spikes and spikes per seedling roots reveals that the genes correlate with each other specifically with the pater and the F2 progeny or the mother and the F2 progeny, which shape phenotypic traits. The numbers of spikes and semi-empty spikes are mainly correlated with the specific coexpression of the TaCKX and NAC2 genes expressed in spikes or spikes per roots of the pater and F2 progeny. Variable regression analysis of grain yield and root mass with TaCKX GFMs and NAC2 expressed in the tested tissues of five crosses revealed a significant dependency of these parameters on the mother and F2 and/or the pater and F2 progeny. We showed that the inheritance of yield-related traits depends on the specific cooperative expression of some TaCKX GFMs, in some crosses coupled with NAC2, and is strongly dependent on the genotypes used for the crosses. Indications for parental selection in the breeding of high-yielding lines are discussed.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Triticum/metabolism , Oxidoreductases/metabolism , Phenotype , Genotype , Seedlings
3.
Int J Mol Sci ; 24(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175902

ABSTRACT

Members of the TaCKX gene family (GFMs) encode the cytokinin oxygenase/dehydrogenase enzyme (CKX), which irreversibly degrades cytokinins in the organs of wheat plants; therefore, these genes perform a key role in the regulation of yield-related traits. The purpose of the investigation was to determine how expression patterns of these genes, together with the transcription factor-encoding gene TaNAC2-5A, and yield-related traits are inherited to apply this knowledge to speed up breeding processes. The traits were tested in 7 days after pollination (DAP) spikes and seedling roots of maternal and paternal parents and their F2 progeny. The expression levels of most of them and the yield were inherited in F2 from the paternal parent. Some pairs or groups of genes cooperated, and some showed opposite functions. Models of up- or down-regulation of TaCKX GFMs and TaNAC2-5A in low-yielding maternal plants crossed with higher-yielding paternal plants and their high-yielding F2 progeny reproduced gene expression and yield of the paternal parent. The correlation coefficients between TaCKX GFMs, TaNAC2-5A, and yield-related traits in high-yielding F2 progeny indicated which of these genes were specifically correlated with individual yield-related traits. The most common was expressed in 7 DAP spikes TaCKX2.1, which positively correlated with grain number, grain yield, spike number, and spike length, and seedling root mass. The expression levels of TaCKX1 or TaNAC2-5A in the seedling roots were negatively correlated with these traits. In contrast, the thousand grain weight (TGW) was negatively regulated by TaCKX2.2.2, TaCKX2.1, and TaCKX10 in 7 DAP spikes but positively correlated with TaCKX10 and TaNAC2-5A in seedling roots. Transmission of TaCKX GFMs and TaNAC2-5A expression patterns and yield-related traits from parents to the F2 generation indicate their paternal imprinting. These newly shown data of nonmendelian epigenetic inheritance shed new light on crossing strategies to obtain a high-yielding F2 generation.


Subject(s)
Paternal Inheritance , Triticum , Triticum/genetics , Plant Breeding , Phenotype , Seedlings/genetics
4.
Int J Mol Sci ; 22(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923687

ABSTRACT

TaCKX gene family members (GFMs) play essential roles in the regulation of cytokinin during wheat development and significantly influence yield-related traits. However, detailed function of most of them is not known. To characterize the role of TaCKX2.2 genes we silenced all homoeologous copies of both TaCKX2.2.1 and TaCKX2.2.2 by RNAi technology and observed the effect of silencing in 7 DAP spikes of T1 and T2 generations. The levels of gene silencing of these developmentally regulated genes were different in both generations, which variously determined particular phenotypes. High silencing of TaCKX2.2.2 in T2 was accompanied by slight down-regulation of TaCKX2.2.1 and strong up-regulation of TaCKX5 and TaCKX11, and expression of TaCKX1, TaCKX2.1, and TaCKX9 was comparable to the non-silenced control. Co-ordinated expression of TaCKX2.2.2 with other TaCKX GFMs influenced phytohormonal homeostasis. Contents of isoprenoid, active cytokinins, their conjugates, and auxin in seven DAP spikes of silenced T2 plants increased from 1.27 to 2.51 times. However, benzyladenine (BA) and abscisic acid (ABA) contents were significantly reduced and GA3 was not detected. We documented a significant role of TaCKX2.2.2 in the regulation of thousand grain weight (TGW), grain number, and chlorophyll content, and demonstrated the formation of a homeostatic feedback loop between the transcription of tested genes and phytohormones. We also discuss the mechanism of regulation of yield-related traits.


Subject(s)
Edible Grain/genetics , Genes, Plant , Plant Growth Regulators/metabolism , Triticum/genetics , Abscisic Acid/metabolism , Chlorophyll/metabolism , Cytokinins/metabolism , Edible Grain/growth & development , Edible Grain/metabolism , Gene Expression Regulation, Plant , Homeostasis , Indoleacetic Acids/metabolism , Triticum/growth & development , Triticum/metabolism
5.
BMC Plant Biol ; 20(1): 496, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33121443

ABSTRACT

BACKGROUND: TaCKX wheat gene family members (GFMs) encode the enzyme cytokinin oxidase/dehydrogenase (CKX), which irreversibly degrades cytokinins. The genes are important regulators of cytokinin content and take part in growth and development, with a major impact on yield-related traits. The goal of this research was to test whether these genes might be differentially expressed in the field compared to laboratory conditions and consequently differently affect plant development and yield. RESULTS: We compared expression and crosstalk of the TaCKX GFMs and TaNAC2-5A gene in modern varieties grown in a growth chamber (GC) and in the field and looked for differences in their impact on yield-related traits. The TaNAC2-5A gene was included in the research since it was expected to play an important role in co-regulation of these genes. The range of relative expression levels of TaCKX GFMs and TaNAC2-5A gene among tested cultivars was from 5 for TaCKX8 to more than 100 for TaCKX9 in the GC and from 6 for TaCKX8 to 275 for TaCKX10 in the field. The range was similar for four of them in the GC, but was much higher for seven others and TaNAC2-5A in the field. The TaCKX GFMs and TaNAC2-5A form co-expression groups, which differ depending on growth conditions. Consequently, the genes also differently regulate yield-related traits in the GC and in the field. TaNAC2-5A took part in negative regulation of tiller number and CKX activity in seedling roots only in controlled GC conditions. Grain number and grain yield were negatively regulated by TaCKX10 in the GC but positively by TaCKX8 and others in the field. Some of the genes, which were expressed in seedling roots, negatively influenced tiller number and positively regulated seedling root weight, CKX activity in the spikes, thousand grain weight (TGW) as well as formation of semi-empty spikes. CONCLUSIONS: We have documented that: 1) natural variation in expression levels of tested genes in both environments is very high, indicating the possibility of selection of beneficial genotypes for breeding purposes, 2) to create a model of an ideotype for breeding, we need to take into consideration the natural environment.


Subject(s)
Genes, Plant/genetics , Oxidoreductases/genetics , Plant Proteins/genetics , Triticum/genetics , Crop Production , Environment , Gene Expression Regulation, Plant , Genes, Plant/physiology , Oxidoreductases/physiology , Plant Proteins/physiology , Quantitative Trait, Heritable , Triticum/enzymology , Triticum/growth & development
6.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645965

ABSTRACT

TaCKX, Triticum aestivum (cytokinin oxidase/dehydrogenase) family genes influence the development of wheat plants by the specific regulation of cytokinin content in different organs. However, their detailed role is not known. The TaCKX1, highly and specifically expressed in developing spikes and in seedling roots, was silenced by RNAi-mediated gene silencing via Agrobacterium tumefaciens and the effect of silencing was investigated in 7 DAP (days after pollination) spikes of T1 and T2 generations. Various levels of TaCKX1 silencing in both generations influence different models of co-expression with other TaCKX genes and parameters of yield-related traits. Only a high level of silencing in T2 resulted in strong down-regulation of TaCKX11 (3), up-regulation of TaCKX2.1, 2.2, 5, and 9 (10), and a high yielding phenotype. This phenotype is characterized by a higher spike number, grain number, and grain yield, but lower thousand grain weight (TGW). The content of most of cytokinin forms in 7 DAP spikes of silenced T2 lines increased from 23% to 76% compared to the non-silenced control. The CKs cross talk with other phytohormones. Each of the tested yield-related traits is regulated by various up- or down-regulated TaCKX genes and phytohormones. The coordinated effect of TaCKX1 silencing on the expression of other TaCKX genes, phytohormone levels in 7 DAP spikes, and yield-related traits in silenced T2 lines is presented.


Subject(s)
Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Triticum/genetics , Cytokinins/genetics , Down-Regulation/genetics , Edible Grain/genetics , Oxidoreductases/genetics , Phenotype , Plant Growth Regulators/genetics , Plant Leaves/genetics , Plant Roots/genetics , Plants, Genetically Modified/genetics , Seedlings/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...