Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(41): e2303152, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37670535

ABSTRACT

The world of 2D materials is steadily growing, with numerous researchers attempting to discover, elucidate, and exploit their properties. Approaches relying on the detection of single fluorescent molecules offer a set of advantages, for instance, high sensitivity and specificity, that allow the drawing of conclusions with unprecedented precision. Herein, it is argued how the study of 2D materials benefits from fluorescence-based single-molecule modalities, and vice versa. A special focus is placed on DNA, serving as a versatile adaptor when anchoring single dye molecules to 2D materials. The existing literature on the fruitful combination of the two fields is reviewed, and an outlook on the additional synergies that can be created between them provided.

3.
Light Sci Appl ; 11(1): 199, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773265

ABSTRACT

Localization of single fluorescent emitters is key for physicochemical and biophysical measurements at the nanoscale and beyond ensemble averaging. Examples include single-molecule tracking and super-resolution imaging by single-molecule localization microscopy. Among the numerous localization methods available, MINFLUX outstands for achieving a ~10-fold improvement in resolution over wide-field camera-based approaches, reaching the molecular scale at moderate photon counts. Widespread application of MINFLUX and related methods has been hindered by the technical complexity of the setups. Here, we present RASTMIN, a single-molecule localization method based on raster scanning a light pattern comprising a minimum of intensity. RASTMIN delivers ~1-2 nm localization precision with usual fluorophores and is easily implementable on a standard confocal microscope with few modifications. We demonstrate the performance of RASTMIN in localization of single molecules and super-resolution imaging of DNA origami structures.

4.
Nanoscale ; 13(44): 18421-18433, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34739534

ABSTRACT

Super-resolution fluorescence microscopy and Förster Resonance Energy Transfer (FRET) form a well-established family of techniques that has provided unique tools to study the dynamic architecture and functionality of biological systems, as well as to investigate nanomaterials. In the last years, the integration of super-resolution methods with FRET measurements has generated advances in two fronts. On the one hand, FRET-based probes have enhanced super-resolution imaging. On the other, the development of super-resolved FRET imaging methods has allowed the visualization of molecular interaction patterns with higher spatial resolution, less averaging and higher dynamic range. Here, we review these advances and discuss future perspectives, including the possible integration of FRET with next generation super-resolution techniques capable of reaching true molecular-scale spatial resolution.


Subject(s)
Fluorescence Resonance Energy Transfer , Microscopy, Fluorescence
5.
Nano Lett ; 21(5): 2296-2303, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33621102

ABSTRACT

Förster resonance energy transfer (FRET) imaging methods provide unique insight into the spatial distribution of energy transfer and (bio)molecular interaction events, though they deliver average information for an ensemble of events included in a diffraction-limited volume. Coupling super-resolution fluorescence microscopy and FRET has been a challenging and elusive task. Here, we present STED-FRET, a method of general applicability to obtain super-resolved energy transfer images. In addition to higher spatial resolution, STED-FRET provides a more accurate quantification of interaction and has the capacity of suppressing contributions of noninteracting partners, which are otherwise masked by averaging in conventional imaging. The method capabilities were first demonstrated on DNA-origami model systems, verified on uniformly double-labeled microtubules, and then utilized to image biomolecular interactions in the membrane-associated periodic skeleton (MPS) of neurons.

6.
Nat Commun ; 12(1): 517, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483489

ABSTRACT

Single-molecule localization microscopy enables far-field imaging with lateral resolution in the range of 10 to 20 nanometres, exploiting the fact that the centre position of a single-molecule's image can be determined with much higher accuracy than the size of that image itself. However, attaining the same level of resolution in the axial (third) dimension remains challenging. Here, we present Supercritical Illumination Microscopy Photometric z-Localization with Enhanced Resolution (SIMPLER), a photometric method to decode the axial position of single molecules in a total internal reflection fluorescence microscope. SIMPLER requires no hardware modification whatsoever to a conventional total internal reflection fluorescence microscope and complements any 2D single-molecule localization microscopy method to deliver 3D images with nearly isotropic nanometric resolution. Performance examples include SIMPLER-direct stochastic optical reconstruction microscopy images of the nuclear pore complex with sub-20 nm axial localization precision and visualization of microtubule cross-sections through SIMPLER-DNA points accumulation for imaging in nanoscale topography with sub-10 nm axial localization precision.


Subject(s)
Fluorescence , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Nanotechnology/methods , Single Molecule Imaging/methods , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , DNA/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HeLa Cells , Humans , Image Processing, Computer-Assisted/methods , Mice , Microtubules/metabolism , Photometry/methods
7.
Biophys Rev ; 13(6): 1101-1112, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35059030

ABSTRACT

Fluorescence nanoscopy represented a breakthrough for the life sciences as it delivers 20-30 nm resolution using far-field fluorescence microscopes. This resolution limit is not fundamental but imposed by the limited photostability of fluorophores under ambient conditions. This has motivated the development of a second generation of fluorescence nanoscopy methods that aim to deliver sub-10 nm resolution, reaching the typical size of structural proteins and thus providing true molecular resolution. In this review, we present common fundamental aspects of these nanoscopies, discuss the key experimental factors that are necessary to fully exploit their capabilities, and discuss their current and future challenges.

8.
Nanoscale ; 12(17): 9495-9506, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32313910

ABSTRACT

Single Molecule Localization Microscopy (SMLM) currently attains a lateral resolution of around 10 nm approaching molecular size. Together with increasingly specific fluorescent labeling, it opens the possibility to quantitatively analyze molecular organization. When the labeling density is high enough, SMLM provides clear images of the molecular organization. However, either due to limited labeling efficiency or due to intrinsically low molecular abundance, SMLM delivers a small set of sparse and highly precise localizations. In this work, we introduce a correlation analysis of molecular locations based on the functional dependence of the complementary cumulative distribution function (CCDF) of the distance to the first neighbor (r1). We demonstrate that the log(-log(CCDF(r1))) vs. log(r1) is characterized by a scaling exponent n that takes extreme values of 2 for a random 2D distribution and 1 for a strictly linear arrangement, and find that n is a robust and sensitive metric to distinguish characteristics of the underlying structure responsible for the molecular distribution, even at a very low labeling density. The method enables the detection of fibrillary organization and the estimation of the diameter of host fibers under conditions where a visual inspection provides no clue.

9.
Sci Rep ; 10(1): 2917, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32076054

ABSTRACT

Fluorescent nanoscopy approaches have been used to characterize the periodic organization of actin, spectrin and associated proteins in neuronal axons and dendrites. This membrane-associated periodic skeleton (MPS) is conserved across animals, suggesting it is a fundamental component of neuronal extensions. The nanoscale architecture of the arrangement (190 nm) is below the resolution limit of conventional fluorescent microscopy. Fluorescent nanoscopy, on the other hand, requires costly equipment and special analysis routines, which remain inaccessible to most research groups. This report aims to resolve this issue by using protein-retention expansion microscopy (pro-ExM) to reveal the MPS of axons. ExM uses reagents and equipment that are readily accessible in most neurobiology laboratories. We first explore means to accurately estimate the expansion factors of protein structures within cells. We then describe the protocol that produces an expanded specimen that can be examined with any fluorescent microscopy allowing quantitative nanoscale characterization of the MPS. We validate ExM results by direct comparison to stimulated emission depletion (STED) nanoscopy. We conclude that ExM facilitates three-dimensional, multicolor and quantitative characterization of the MPS using accessible reagents and conventional fluorescent microscopes.


Subject(s)
Axons/metabolism , Microscopy, Fluorescence/methods , Spectrin/metabolism , Animals , Calibration , Cell Membrane/metabolism , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Rats, Wistar , Reproducibility of Results
10.
Nanoscale Adv ; 1(5): 1833-1846, 2019 May 15.
Article in English | MEDLINE | ID: mdl-36134238

ABSTRACT

Engineering oligomeric protein self-assembly is an attractive approach to fabricate nanostructures with well-defined geometries, stoichiometry and functions. The homodecamer Brucella Lumazine Synthase (BLS) is a highly stable and immunogenic protein nanoparticle (PNP). Here, we engineered the BLS protein scaffold to display two functions in spatially opposite regions of its structure yielding a Janus-like nanoparticle. An in silico analysis of the BLS head-to-head dimer of homopentamers shows major inter-pentameric interactions located in the equatorial interface. Based on this analysis, two BLS protomer variants were designed to interrupt pentamer self-dimerization and promote heteropentameric dimers. This strategy enabled us to generate a decameric particle with two distinct sides formed by two independent pentamers. The versatility of this new self-assembly nanofabrication strategy is illustrated with two example applications. First, a bifunctional BLS bearing Alexa Fluor 488 fluorophores on one side and sialic acid binding domains on the other side was used for labelling murine and human cells and analyzed by flow cytometry and confocal microscopy. Second, multichromophoric FRET nanoparticles were fabricated and characterized at the single molecule level, showing discrete energy transfer events. The engineered BLS variants constitute a general platform for displaying two functions in a controlled manner within the same PNP with potential applications in various areas such as biomedicine, biotechnology and nanotechnology.

11.
Phys Chem Chem Phys ; 20(46): 29212-29220, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30427333

ABSTRACT

Class B G protein-coupled receptors (GPCRs) are involved in a variety of human pathophysiological states. These groups of membrane receptors are less studied than class A GPCRs due to the lack of structural information, delayed small molecule drug discovery, and scarce fluorescence detection tools available. The class B corticotropin-releasing hormone type 1 receptor (CRHR1) is a key player in the stress response whose dysregulation is critically involved in stress-related disorders: psychiatric conditions (i.e. depression, anxiety, and addictions), neuroendocrinological alterations, and neurodegenerative diseases. Here, we present a strategy to label GPCRs with a small fluorescent antagonist that permits the observation of the receptor in live cells through stochastic optical reconstruction microscopy (STORM) with 23 nm resolution. The marker, an aza-BODIPY derivative, was designed based on computational docking studies, then synthesized, and finally tested in biological cells. Experiments on hippocampal neurons demonstrate antagonist effects in similar concentrations as the well-established antagonist CP-376395. A quantitative analysis of two color STORM images enabled the determination of the binding affinity of the new marker in the cellular environment.


Subject(s)
Molecular Docking Simulation , Nanotechnology , Optical Imaging , Receptors, Corticotropin-Releasing Hormone/chemistry , Biomarkers/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Humans , Microscopy, Fluorescence , Molecular Structure , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...