Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Chromosomes Cancer ; 61(12): 720-733, 2022 12.
Article in English | MEDLINE | ID: mdl-35778917

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous and aggressive malignancy arising from T-cell precursors. MiRNAs are implicated in negative regulation of gene expression and when aberrantly expressed contribute to various cancer types, including T-ALL. Previously we demonstrated the oncogenic potential of miR-363-3p overexpression in a subgroup of T-ALL patients. Here, using combined proteomic and transcriptomic approaches, we show that miR-363-3p enhances cell growth of T-ALL in vitro via inhibition of PTPRC and SOCS2, which are implicated in repression of the JAK-STAT pathway. We propose that overexpression of miR-363-3p is a novel mechanism potentially contributing to overactivation of JAK-STAT pathway. Additionally, by combining the transcriptomic and methylation data of T-ALL patients, we show that promoter methylation may also contribute to downregulation of SOCS2 expression and thus potentially to JAK-STAT activation. In conclusion, we highlight aberrant miRNA expression and aberrant promoter methylation as mechanisms, alternative to mutations of JAK-STAT-related genes, which might lead to the upregulation of JAK-dependent signaling in T-ALL.


Subject(s)
MicroRNAs , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Cell Line, Tumor , Child , Humans , Janus Kinases/genetics , Leukocyte Common Antigens/metabolism , Methylation , MicroRNAs/genetics , MicroRNAs/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proteomics , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism
2.
Blood Cancer Discov ; 1(3): 274-289, 2020 11.
Article in English | MEDLINE | ID: mdl-33179015

ABSTRACT

Cancer cells display DNA hypermethylation at specific CpG islands in comparison to their normal healthy counterparts, but the mechanism that drives this so-called CpG island methylator phenotype (CIMP) remains poorly understood. Here, we show that CpG island methylation in human T-cell acute lymphoblastic leukemia (T-ALL) mainly occurs at promoters of Polycomb Repressor Complex 2 (PRC2) target genes that are not expressed in normal or malignant T-cells and which display a reciprocal association with H3K27me3 binding. In addition, we revealed that this aberrant methylation profile reflects the epigenetic history of T-ALL and is established already in pre-leukemic, self-renewing thymocytes that precede T-ALL development. Finally, we unexpectedly uncover that this age-related CpG island hypermethylation signature in T-ALL is completely resistant to the FDA-approved hypomethylating agent Decitabine. Altogether, we here provide conceptual evidence for the involvement of a pre-leukemic phase characterized by self-renewing thymocytes in the pathogenesis of human T-ALL.


Subject(s)
Aging , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Thymocytes , CpG Islands/genetics , DNA Methylation/genetics , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
3.
Cells ; 9(5)2020 05 05.
Article in English | MEDLINE | ID: mdl-32380791

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy arising from T lymphocyte precursors. We have previously shown by miRNA-seq, that miRNAs from the mir-106a-363 cluster are overexpressed in pediatric T-ALL. In silico analysis indicated their potential involvement in the regulation of apoptosis. Here, we aimed to test the hypothesis on the pro-tumorigenic roles of these miRNAs in T-ALL cells in vitro. We demonstrate, for the first time, that hsa-miR-20b-5p and hsa-miR-363-3p from the mir-106a-363 cluster, when upregulated in T-ALL cells in vitro, protect leukemic cells from apoptosis, enhance proliferation, and contribute to growth advantage. We show, using dual luciferase reporter assays, Ago2-RNA immunoprecipitation, RT-qPCR, and Western blots, that the oncogenic effects of these upregulated miRNAs might, at least in part, be mediated by the downregulation of two important tumor suppressor genes, PTEN and BIM, targeted by both miRNAs. Additionally, we demonstrate the cooperative effects of these two miRNAs by simultaneous inhibition of both miRNAs as compared to the inhibition of single miRNAs. We postulate that hsa-miR-20b-5p and hsa-miR-363-3p from the mir-106a-363 cluster might serve as oncomiRs in T-ALL, by contributing to post-transcriptional repression of key tumor suppressors, PTEN and BIM.


Subject(s)
Bcl-2-Like Protein 11/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , MicroRNAs/metabolism , PTEN Phosphohydrolase/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Apoptosis/genetics , Bcl-2-Like Protein 11/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , HEK293 Cells , Humans , MicroRNAs/genetics , PTEN Phosphohydrolase/metabolism
4.
Oral Oncol ; 49(2): 144-51, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22944049

ABSTRACT

OBJECTIVES: PRAME (Preferentially Expressed Antigen in Melanoma) is a tumor-associated antigen recognized by immunocytes, and it induces cytotoxic T cell-mediated responses in melanoma. PRAME expression in tumors interferes with retinoic acid receptor (RAR) signaling thus promoting tumor progression. Here, we study PRAME expression in head and neck squamous cell carcinoma (HNSCC) to determine its potential clinical significance. MATERIALS AND METHODS: PRAME expression in HNSCC was evaluated by immunohistochemistry in tissue microarrays of primary tumors (n=53), metastatic lymph nodes (n=8) and normal oral mucosa (n=11). Biopsies of dysplastic oral lesions (n=12) were also examined. PRAME expression levels in tissues were correlated with markers of poor prognosis in HNSCC. PRAME mRNA in HNSCC cell lines and in normal immortalized human keratinocytes (HaCaT cell line) was measured by qRT-PCR, and the protein expression by flow cytometry and western blots. RESULTS: PRAME was expressed in HNSCC cell lines and HNSCC lesions. PRAME expression in dysplastic mucosa was variable. No or only weak expression was found in normal cells or tissues. PRAME expression levels significantly correlated with the tumor grade, size, nodal involvement and the clinical status of HNSCC patients. CONCLUSIONS: Elevated PRAME expression associates with clinicopathologic markers of poor outcome in HNSCC and might identify potential candidates with pre-cancerous lesions for chemoprevention with retinoids.


Subject(s)
Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/prevention & control , Head and Neck Neoplasms/prevention & control , Precancerous Conditions/metabolism , Retinoids/therapeutic use , Adult , Aged , Aged, 80 and over , Base Sequence , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Chemoprevention , DNA Primers , Disease Progression , Female , Flow Cytometry , Head and Neck Neoplasms/metabolism , Humans , Male , Middle Aged , Precancerous Conditions/pathology , Prognosis , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
5.
Rep Pract Oncol Radiother ; 17(1): 13-8, 2012.
Article in English | MEDLINE | ID: mdl-24376999

ABSTRACT

BACKGROUND/AIM: The aim of our study was to check how MGMT methylation status together with known factors influenced the risk of colon cancer development. MATERIALS AND METHODS: We examined patients with colon polyps. Information concerning gender, age, lifestyle, diet, anthropometry and medical information, including cancer and family history of cancer, was analyzed. Polymorphism variety of MGMT gene was investigated in another study. Genetic analysis for MGMT methylation assessment was performed for polyp tissue samples from 143 patients. RESULTS: Positive methylation MGMT status was found in 55 patients. There was no correlation between gender and MGMT methylation status (p = 0.43). We did not find correlation between patients younger and older than 60 (p = 0.87). There was no correlation between smoking and MGMT methylation status (p = 0.36). We did not find correlation between BMI and MGMT methylation status (p = 0.86). We did not find correlation between MGMT methylation status and colon cancer in familial history (p = 0.45). CONCLUSION: Our study showed no correlations between methylation status of MGMT polymorphisms and clinical features like age, gender, polyp localization, smoking status, or obesity. It has been shown previously that MGMT methylation status may show nonspecific methylation in colon polyps. Gene methylation status in adenoma tissues has also been associated by other authors with the adenoma's size, histology, and degree of atypia. In our study, we evaluated the gene methylation status in colon polyps and found no association with adenoma characteristics. The present study showed no correlation for MGMT methylation in polyps in different regions of colon.

SELECTION OF CITATIONS
SEARCH DETAIL
...