Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Geohealth ; 6(12): e2022GH000680, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36545343

ABSTRACT

Tungurahua volcano (Ecuador) intermittently emitted ash between 1999 and 2016, enduringly affecting the surrounding rural area and its population, but its health impact remains poorly documented. We aim to assess the respiratory health hazard posed by the 16-17 August 2006 most intense eruptive phase of Tungurahua. We mapped the spatial distribution of the health-relevant ash size fractions produced by the eruption in the area impacted by ash fallout. We quantified the mineralogy, composition, surface texture, and morphology of a respirable ash sample isolated by aerodynamic separation. We then assessed the cytotoxicity and pro-inflammatory potential of this respirable ash toward lung tissues in-vitro using A549 alveolar epithelial cells, by electron microscopy and biochemical assays. The eruption produced a high amount of inhalable and respirable ash (12.0-0.04 kg/m2 of sub-10 µm and 5.3-0.02 kg/m2 of sub-4 µm ash deposited). Their abundance and proportion vary greatly across the deposit within the first 20 km from the volcano. The respirable ash is characteristic of an andesitic magma and no crystalline silica is detected. Morphological features and surface textures are complex and highly variable, with few fibers observed. In-vitro experiments show that respirable volcanic ash is internalized by A549 cells and processed in the endosomal pathway, causing little cell damage, but resulting in changes in cell morphology and membrane texture. The ash triggers a weak pro-inflammatory response. These data provide the first understanding of the respirable ash hazard near Tungurahua and the extent to which it varies spatially in a fallout deposit.

3.
BMJ Open ; 12(4): e050060, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379612

ABSTRACT

INTRODUCTION: Ischaemic stroke is the leading cause of adult disability. Thus, a strategy based on an efficient antiplatelet therapy has been developed. The monitoring of antiplatelet therapy is now limited to high risk and poor prognosis patients. Indeed, the biological monitoring of the antiplatelet therapy with available platelet function assays do not provide a global integrative approach. Platelet transmission electron microscopy, recently validated for assessing distinct ultrastructural abnormalities is a reliable morphological platelet structural analysis tool which could be used to collect all the ultrastructural platelet characteristics and assess the degree of activation of platelets. METHODS AND ANALYSIS: Our pilot prospective and descriptive study will include 50 consecutive patients hospitalized for an ischaemic stroke. We expect to identify ultrastructural characteristics that will be correlated with the degree of platelet activation to guide clinicians in decision making regarding the antiplatelet therapy strategy. ETHICS AND DISSEMINATION: The French Ethics Committee (comité de protection des personnes d'Ile-de-France VII) approved the information notice that will be given to participants and the protocol of this trial (protocol No 21-031).The results of the trial will be disseminated through scientific publications. TRIAL REGISTRATION NUMBER: NCT05004233.


Subject(s)
Brain Ischemia , Stroke , Adult , Blood Platelets , Humans , Microscopy, Electron, Transmission , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Prospective Studies , Stroke/drug therapy
4.
Oncotarget ; 8(56): 95316-95331, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29221130

ABSTRACT

Triple-Negative Basal-Like tumors, representing 15 to 20% of breast cancers, are very aggressive and with poor prognosis. Targeted therapies have been developed extensively in preclinical and clinical studies to open the way for new treatment strategies. The present study has focused on developing 3D cell cultures from SUM1315 and MDA-MB-231, two triple-negative basal-like (TNBL) breast cancer cell lines, using the liquid overlay technique. Extracellular matrix concentration, cell density, proliferation, cell viability, topology and ultrastructure parameters were determined. The results showed that for both cell lines, the best conditioning regimen for compact and homogeneous spheroid formation was to use 1000 cells per well and 2% Geltrex®. This conditioning regimen highlighted two 3D cell models: non-proliferative SUM1315 spheroids and proliferative MDA-MB-231 spheroids. In both cell lines, the comparison of 2D vs 3D cell culture viability in the presence of increasing concentrations of chemotherapeutic agents i.e. cisplatin, docetaxel and epirubicin, showed that spheroids were clearly less sensitive than monolayer cell cultures. Moreover, a proliferative or non-proliferative 3D cell line property would enable determination of cytotoxic and/or cytostatic drug activity. 3D cell culture could be an excellent tool in addition to the arsenal of techniques currently used in preclinical studies.

5.
Am J Pathol ; 185(9): 2421-30, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26165863

ABSTRACT

Clinical data and experimental studies suggest that bronchial epithelium could serve as a portal of entry for invasive fungal infections. We therefore analyzed the interactions between molds and the bronchial/bronchiolar epithelium at the early steps after inhalation. We developed invasive aspergillosis (Aspergillus fumigatus) and mucormycosis (Lichtheimia corymbifera) murine models that mimic the main clinical risk factors for these infections. Histopathology studies were completed with a specific computer-assisted morphometric method to quantify bronchial and alveolar spores and with transmission electron microscopy. Morphometric analysis revealed a higher number of bronchial/bronchiolar spores for A. fumigatus than L. corymbifera. The bronchial/bronchiolar spores decreased between 1 and 18 hours after inoculation for both fungi, except in corticosteroid-treated mice infected with A. fumigatus, suggesting an effect of cortisone on bronchial spore clearance. No increase in the number of spores of any species was observed over time at the basal pole of the epithelium, suggesting the lack of transepithelial crossing. Transmission electron microscopy did not show spore internalization by bronchial epithelial cells. Instead, spores were phagocytized by mononuclear cells on the apical pole of epithelial cells. Early epithelial internalization of fungal spores in vivo cannot explain the bronchial/bronchiolar epithelium invasion observed in some invasive mold infections. The bioimaging approach provides a useful means to accurately enumerate and localize the fungal spores in the pulmonary tissues.


Subject(s)
Aspergillosis/microbiology , Aspergillus fumigatus , Epithelial Cells/ultrastructure , Epithelium/pathology , Microscopy, Electron, Transmission , Spores, Fungal/metabolism , Animals , Aspergillosis/metabolism , Aspergillosis/pathology , Cell Membrane Permeability , Disease Models, Animal , Epithelial Cells/immunology , Humans , Lung/immunology , Lung/microbiology , Lung/pathology , Male , Mice , Phagocytosis/immunology
6.
Rapid Commun Mass Spectrom ; 27(21): 2343-54, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24097390

ABSTRACT

RATIONALE: Ethanol lock is an emerging therapeutic option for preventing and/or controlling catheter-associated infection. A previous study of silicone catheters showed they underwent no polymer degradation when kept in 60% ethanol for 15 days at 37 °C. The stability of the more widely used polyurethane catheters was studied here in the same way. METHODS: A qualitative and quantitative study of the stability of Carbothane® catheters was performed following their immersion at 37 °C in different solvents (0.9% sodium chloride as control medium and 40%, 60%, 95% ethanol solutions) for different periods of time (from 5 min to 15 days) using scanning electron microscopy and complementary mass spectrometry techniques. RESULTS: Electron ionization analysis of the 95% ethanol storage solutions revealed the release of about 45 products (8 of which were major) subdivided into two groups according to their fragmentation patterns. Combining all the mass spectrometric data made it possible to propose structures. Group I (major) originated from the polycarbonate diol component (soft segment) and group II (minor) from the dicyclohexylmethane-4,4'-diisocyanate component (rigid segment). Semi-quantitative gas chromatography/mass spectrometry (GC/MS) analysis showed that no significantly higher release was observed after immersion for 30 min at 37 °C in 40% ethanol (mean ratio = 0.677 ± 0.068) than after immersion in reference 0.9% sodium chloride solution for 15 days (0.837 ± 0.127). CONCLUSIONS: A 30 min-40% (v/v) ethanol solution can be considered as safe for preventing the infectious complications of Carbothane® dialysis catheters, and a 30 min-60% (v/v) ethanol treatment can be occasionally used to eradicate established biofilm.


Subject(s)
Catheters , Ethanol/chemistry , Mass Spectrometry/methods , Polyurethanes/chemistry , Catheter-Related Infections/prevention & control , Catheters/adverse effects , Humans , Microscopy, Electron, Scanning/methods , Solvents/chemistry
7.
J Colloid Interface Sci ; 356(2): 566-72, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21315370

ABSTRACT

Acetate intercalated NiAl-Layered Double Hydroxide nanoparticles were prepared by polyol process and further used as building blocks to form hybrid LDH spheres by a spray drying technique. The spherical aggregated LDH particles display a polydispersed size with a diameter ranging from 47 nm to 2 µm. The analysis of the thermal behavior evidenced that the spherical form was maintained upon calcination up to 1100°C, giving rise to derived mixed oxide (NiO+NiAl(2)O(4)) nanospheres. Interestingly, the spherical morphology of the LDH materials was also retained during anion exchange process. The replacement of the intercalated acetate anion by of a voluminous anion such as dodecylsulfate induces an increase of the nanosphere mean diameter of 65%. The different materials were deeply characterized using X-ray diffraction, FTIR spectroscopy, scanning and transmission electron microscopies, dynamic light scattering, thermal analysis and nitrogen sorption.


Subject(s)
Aerosols/chemistry , Hydroxides/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Desiccation/methods , Hot Temperature , Nanoparticles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...