Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Materials (Basel) ; 15(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36363072

ABSTRACT

Liu Kang (1911-2004) was a Chinese artist who settled in Singapore in 1945 and eventually became a leading modern artist in Singapore. He received academic training in Shanghai (1926-1928) and Paris (1929-1932). Liu Kang's frequent visits to China from the 1970s to the 1990s contributed to a special artistic subject-the Huangshan and Guilin mountains. This subject matter triggered an uncommon painting approach for his oeuvre. In this context, this study elucidates the artist's choice of materials and methods for the execution of 11 paintings, dating between 1977 and 1996, depicting Huangshan and Guilin landscapes. The paintings belong to the collection of the National Gallery Singapore. They were investigated with a combination of non- and micro-invasive techniques, supplemented by a wealth of documentary sources and art history research. The obtained results highlight the predominant use of hardboards resembling Masonite® Presdwood® without the application of an intermediate ground layer. Commercially prepared cotton and linen painting supports were used less frequently, and their structure and ground composition were variable. This study revealed the use of a conventional colour base for the execution of the paintings-a consistent colour scheme favouring ultramarine, yellow and red iron-containing earths, viridian and titanium white. Less commonly used pigments include Prussian blue, cobalt blue, phthalocyanine blue, phthalocyanine green, naphthol red AS-D, umber, Cr-containing yellow(s), cadmium yellow or its variant(s), Hansa yellow G, lithopone and/or barium white and zinc white and bone black. The documentary sources indirectly pointed to the use of Royal Talens, Rowney and Winsor & Newton, brands of oil paints. Moreover, technical and archival findings indicated the artist's tendency to recycle rejected compositions, thereby strongly suggesting that the paintings were executed in the studio. Although this study focuses on the Singapore artist and his series of paintings relating to China, it contributes to existing international studies of modern artists' materials.

2.
Materials (Basel) ; 15(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35683096

ABSTRACT

Ground rubber from automobile tires is very difficult to recycle due to the cross-linking of the macromolecules and thus the lack of thermoplastic properties. The research consisted of assessing the processing possibility via the injection of highly filled PP/GTR compounds modified with 1.5 wt.% 2.5-dimethyl-2.5-di-(tert-butylperoxy)-hexane. GTR dosing ranged from 30 wt.% up to 90 wt.%. The evaluation of the processing properties of the obtained materials was carried out on the basis of the melt flow index test results and the signals recorded during processing by the injection molding by temperature and pressure sensors placed in the mold. The influence of the applied modifier on the changes in the mechanical properties of PP/GTR was determined with hardness, impact and static tensile tests. Moreover, thermal properties were obtained by the differential scanning calorimetry method. It has been found that it is possible to efficiently process compounds with high GTR content using injection molding. The presence of the filler allows to significantly reduce the cooling time in the injection mold and thus the time of the production cycle. It has been confirmed that 2.5-dimethyl-2.5-di-(tert-butylperoxy)-hexane modifies the rheological properties of PP and thus the PP/GTR composition. The lower viscosity of the matrix results in a more accurate bonding with the developed surface of the GTR grains, which results in better mechanical properties of the rubber-filled polypropylene.

3.
Nanoscale ; 10(29): 14153-14164, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-29999506

ABSTRACT

In vitro experiments have shown the great potential of magnetic nanocarriers for multimodal imaging diagnosis and non-invasive therapies. However, their extensive clinical application is still jeopardized by a fast retention in the reticuloendothelial system (RES). The other issue that restrains their potential performance is slow degradation and excretion, which increases their risks of toxicity. We report a promising case in which multicore iron oxide nanoparticles coated with a poly(4-vinylpyridine) polyethylene glycol copolymer show low RES retention and high urinary excretion, as confirmed by single photon emission computerized tomography (SPECT), gamma counting, magnetic resonance imaging (MRI) and electron microscopy (EM) biodistribution studies. These iron oxide-copolymer nanoparticles have a high PEG density in their coating which may be responsible for this effect. Moreover, they show a clear negative contrast in the MR imaging of the kidneys. These nanoparticles with an average hydrodynamic diameter of approximately 20 nm were nevertheless able to cross the glomerulus wall which has an effective pore size of approximately 6 nm. A transmission electron microscopy inspection of kidney tissue revealed the presence of iron containing nanoparticle clusters in proximal tubule cells. This therefore makes them exceptionally useful as magnetic nanocarriers and as new MRI contrast agents for the kidneys.


Subject(s)
Contrast Media , Ferric Compounds , Kidney/diagnostic imaging , Magnetic Resonance Imaging , Metal Nanoparticles , Animals , Kidney Tubules, Proximal/cytology , Mice, Inbred BALB C , Microscopy, Electron , Mononuclear Phagocyte System , Polyethylene Glycols , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
4.
Rev Sci Instrum ; 88(9): 094303, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28964205

ABSTRACT

Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user-independent approach for scatter correction in nuclear medicine.

5.
Nanoscale ; 9(27): 9467-9480, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28660946

ABSTRACT

The design of compact nanoprobes for multimodal bioimaging is a current challenge and may have a major impact on diagnostics and therapeutics. Multicomponent gold-iron oxide nanoparticles have shown high potential as contrast agents in numerous imaging techniques due to the complementary features of iron oxide and gold nanomaterials. In this paper we describe novel gold-iron oxide Janus magnetic-plasmonic nanoparticles as versatile nanoprobes for multimodal imaging. The nanoparticles are characterized as contrast agents for different imaging techniques, including X-ray computed tomography (CT), T2-weighted nuclear magnetic resonance imaging (MRI), photoacoustic imaging (PA), dark-field and bright-field optical microscopy, transmission electron microscopy (TEM), and surface enhanced Raman spectroscopy (SERS). We discuss the effect of particle size and morphology on their performance as contrast agents and show the advantage of a Janus configuration. Additionally, the uptake of nanoparticles by cells can be simultaneously visualized in dark- and bright-field optical microscopy, SERS mapping, and electron microscopy. These complementary techniques allow a complete view of cell uptake in an artifact-free manner, with multiplexing capabilities, and with extra information regarding the nanoparticles' fate inside the cells. Altogether, the results obtained with these non-invasive techniques show the high versatility of these nanoparticles, the advantages of a Janus configuration, and their high potential in multipurpose biomedical applications.


Subject(s)
Contrast Media/chemistry , Ferric Compounds/chemistry , Gold/chemistry , Multimodal Imaging , Nanoparticles/chemistry , Magnetic Resonance Imaging , Microscopy, Electron, Transmission , Photoacoustic Techniques , Spectrum Analysis, Raman , Tomography, X-Ray Computed
6.
Int J Pharm ; 533(2): 389-401, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28552798

ABSTRACT

The aim of our study was to develop and compare the biological performance of two types of biodegradable SN-38 loaded nanoparticles (NPs) with various surface properties, composed of low and high Mw triblock PLGA-PEG-PLGA copolymers, applying rational quality and safety by design approach. Therefore, along with the optimization of crucial physico-chemical properties and in order to evaluate the therapeutical potential and biocompatibility of prepared polymeric nanoparticles, analysis of nano-bio interactions, cell internalization, gene expression and biodistribution studies were performed. The optimized formulations, one of low Mw and one composed of high Mw PLGA-PEG-PLGA copolymer, exhibited different characteristics in terms of surface properties, particle size, zeta potential, drug loading, protein adsorption and biodistribution, which may be attributed to the variations in nano-bio interface interactions due to different NP building blocks length and Mw. On the contrary to protein adsorption and biodistribution studies, both types of NPs exhibited similar results during cell internalization and gene expression studies performed in cell culture medium containing serum proteins. This pool of useful data for internalization and efficacy as well as the notable advance in the circulation time of low Mw NPs may be further employed for shaping the potential of the designed nanocarriers.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Camptothecin/analogs & derivatives , Nanoparticles/administration & dosage , Polyethylene Glycols/administration & dosage , Polyglactin 910/administration & dosage , Adsorption , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Camptothecin/administration & dosage , Camptothecin/chemistry , Camptothecin/pharmacokinetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , Fibroblast Growth Factor 3/genetics , Gene Expression Regulation, Neoplastic/drug effects , Histones/genetics , Humans , Irinotecan , Molecular Weight , Muscle Proteins/genetics , Nanoparticles/chemistry , Nerve Tissue Proteins/genetics , Particle Size , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Polyglactin 910/chemistry , Polyglactin 910/pharmacokinetics , Rats, Wistar , Serum Albumin, Bovine/chemistry , Surface Properties , Tissue Distribution , Ubiquitins/genetics
7.
Biomacromolecules ; 17(10): 3213-3221, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27608431

ABSTRACT

The development of tools for the early diagnosis of pancreatic adenocarcinoma is an urgent need in order to increase treatment success rate and reduce patient mortality. Here, we present a modular nanosystem platform integrating soft nanoparticles with a targeting peptide and an active imaging agent for diagnostics. Biocompatible single-chain polymer nanoparticles (SCPNs) based on poly(methacrylic acid) were prepared and functionalized with the somatostatin analogue PTR86 as the targeting moiety, since somatostatin receptors are overexpressed in pancreatic cancer. The gamma emitter 67Ga was incorporated by chelation and allowed in vivo investigation of the pharmacokinetic properties of the nanoparticles using single photon emission computerized tomography (SPECT). The resulting engineered nanosystem was tested in a xenograph mouse model of human pancreatic adenocarcinoma. Imaging results demonstrate that accumulation of targeted SCPNs in the tumor is higher than that observed for nontargeted nanoparticles due to improved retention in this tissue.


Subject(s)
Adenocarcinoma/genetics , Nanoparticles/administration & dosage , Pancreatic Neoplasms/genetics , Somatostatin/biosynthesis , Adenocarcinoma/diagnosis , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Early Detection of Cancer , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Nanoparticles/chemistry , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/pathology , Polymers/chemistry , Polymethacrylic Acids/administration & dosage , Polymethacrylic Acids/chemistry , Somatostatin/chemistry , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
8.
Theranostics ; 6(11): 1753-67, 2016.
Article in English | MEDLINE | ID: mdl-27570548

ABSTRACT

In vivo Positron Emission Tomography (PET) imaging of the cystine-glutamate antiporter (system xc(-)) activity with [(18)F]FSPG is meant to be an attractive tool for the diagnosis and therapy evaluation of brain diseases. However, the role of system xc(-) in cerebral ischemia and its involvement in inflammatory reaction has been scarcely explored. In this work, we report the longitudinal investigation of the neuroinflammatory process following transient middle cerebral artery occlusion (MCAO) in rats using PET with [(18)F]FSPG and the translocator protein (TSPO) ligand [(18)F]DPA-714. In the ischemic territory, [(18)F]FSPG showed a progressive binding increase that peaked at days 3 to 7 and was followed by a progressive decrease from days 14 to 28 after reperfusion. In contrast, [(18)F]DPA-714 evidenced maximum binding uptake values over day 7 after reperfusion. Ex vivo immnunohistochemistry confirmed the up-regulation of system xc(-) in microglial cells and marginally in astrocytes. Inhibition of system xc(-) with sulfasalazine and S-4-CPG resulted in increased arginase (anti-inflammatory M2 marker) expression at day 7 after ischemia, together with a decrease in TSPO and microglial M1 proinflammatory markers (CCL2, TNF and iNOS) expression. Taken together, these results suggest that system xc(-) plays a key role in the inflammatory reaction underlying experimental stroke.


Subject(s)
Amino Acid Transport System y+/analysis , Brain Ischemia/complications , Brain Ischemia/diagnostic imaging , Encephalitis/diagnostic imaging , Glutamates/administration & dosage , Positron-Emission Tomography/methods , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Animals , Astrocytes/enzymology , Astrocytes/physiology , Disease Models, Animal , Encephalitis/pathology , Longitudinal Studies , Microglia/enzymology , Microglia/physiology , Rats
9.
J Cereb Blood Flow Metab ; 36(4): 702-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26787106

ABSTRACT

The influence of toll-like receptor 4 on neurogenesis and inflammation has been scarcely explored so far by using neuroimaging techniques. For this purpose, we performed magnetic resonance imaging and positron emission tomography with 3'-deoxy-3'-[(18)F]fluorothymidine and [(11)C]PK11195 at 2, 7, and 14 days following cerebral ischemia in TLR4(+/+)and TLR4(-/-)mice. MRI showed similar infarction volumes in both groups. Despite this, positron emission tomography with 3'-deoxy-3'-[(18)F]fluorothymidine and [(11)C]PK11195 evidenced an increase of neurogenesis and a decrease of inflammation in TLR4(-/-)mice after ischemia. These results evidence the versatility of neuroimaging techniques to monitor the role of toll-like receptor 4 after cerebral ischemia.


Subject(s)
Brain Ischemia/diagnostic imaging , Brain Ischemia/genetics , Cell Proliferation , Inflammation/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cerebral Arterial Diseases/genetics , Cerebral Arterial Diseases/pathology , Cerebral Infarction/genetics , Cerebral Infarction/pathology , Dideoxynucleosides , Inflammation/genetics , Inflammation/pathology , Isoquinolines , Lateral Ventricles/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Positron-Emission Tomography , Radiopharmaceuticals , Toll-Like Receptor 4/genetics
10.
J Neurochem ; 136(2): 403-15, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26641206

ABSTRACT

Sildenafil (Viagra) is a selective inhibitor of phosphodiesterase type 5 (PDE5), which degrades cyclic guanosine monophosphate to the linear nucleotide. Sildenafil is acutely used in erectile dysfunction and chronically in pulmonary hypertension. Evidence in the last decade shows that sildenafil may have potential as a therapeutic option for Alzheimer's disease or other neurodegenerative disorders. The purpose of this work was to explore whether sildenafil crosses the blood-brain barrier. Pharmacokinetic properties of sildenafil in rodents were investigated using (11) C-radiolabeling followed by in vivo positron emission tomography (PET) and ex vivo tissue dissection and gamma counting. PET results in rats suggest penetration into the central nervous system. Ex vivo data in perfused animals suggest that trapping of [(11) C]sildenafil within the cerebral vascular endothelium limits accumulation in the central nervous system parenchyma. Peroral sildenafil administration to Macaca fascicularis and subsequent chemical analysis of plasma and cerebrospinal fluid (CSF) using liquid chromatography coupled with tandem mass spectrometry showed that drug content in the CSF was high enough to achieve PDE5 inhibition, which was also demonstrated by the significant increases in CSF cyclic guanosine monophosphate levels. Central actions of sildenafil include both relaxation of the cerebral vasculature and inhibition of PDE5 in neurons and glia. This central action of sildenafil may underlie its efficacy in neuroprotection models, and may justify the continued search for a PDE5 ligand suitable for PET imaging. Sildenafil interacts with phosphodiesterase type 5 (PDE5) expressed in the endothelium and/or smooth muscle cells of brain vessels and also crosses the blood-brain barrier to interact with PDE5 expressed in brain cells. At therapeutic doses, the concentration of sildenafil in the cerebrospinal fluid (CSF) is high enough to inhibit PDE5 in the neural cells (neurons and glia). In turn, the concentration of cGMP likely increases in parenchymal cells and, as shown in this report, in the CSF. Read the Editorial Highlight for this article on page 220. Cover Image for this issue: doi: 10.1111/jnc.13302.


Subject(s)
Cyclic GMP/cerebrospinal fluid , Phosphodiesterase 5 Inhibitors/pharmacokinetics , Sildenafil Citrate/pharmacokinetics , Animals , Brain/diagnostic imaging , Brain/drug effects , Chromatography, Liquid , Cyclic GMP/blood , Kidney/diagnostic imaging , Kidney/drug effects , Liver/drug effects , Liver/metabolism , Macaca fascicularis , Male , Positron-Emission Tomography , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Testis/drug effects , Testis/metabolism , Time Factors , Tissue Distribution/drug effects , Tomography Scanners, X-Ray Computed
11.
Eur J Nucl Med Mol Imaging ; 43(6): 1124-38, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26659901

ABSTRACT

PURPOSE: Glutamate excitotoxicity contributes to oligodendroglial and axonal damage in multiple sclerosis pathology. Extracellular glutamate concentration in the brain is controlled by cystine/glutamate antiporter (system xc-), a membrane antiporter that imports cystine and releases glutamate. Despite this, the system xc(-) activity and its connection to the inflammatory reaction in multiple sclerosis (MS) is largely unknown. METHODS: Longitudinal in vivo magnetic resonance (MRI) and positron emission tomography (PET) imaging studies with 2-[(18)F]Fluoro-2-deoxy-D-glucose ([(18)F]FDG), [(11)C]-(R)-(1-(2-chlorophenyl)-N-methyl-N-1(1-methylpropyl)-3-isoquinolinecarboxamide ([(11)C]PK11195) and (4S)-4-(3-(18)F-fluoropropyl)-L-glutamate ([(18)F]FSPG) were carried out during the course of experimental autoimmune encephalomyelitis (EAE) induction in rats. RESULTS: [(18)F]FSPG showed a significant increase of system xc(-) function in the lumbar section of the spinal cord at 14 days post immunization (dpi) that stands in agreement with the neurological symptoms and ventricle edema formation at this time point. Likewise, [(18)F]FDG did not show significant changes in glucose metabolism throughout central nervous system and [(11)C]PK11195 evidenced a significant increase of microglial/macrophage activation in spinal cord and cerebellum 2 weeks after EAE induction. Therefore, [(18)F]FSPG showed a major capacity to discriminate regions of the central nervous system affected by the MS in comparison to [(18)F]FDG and [(11)C]PK11195. Additionally, clodronate-treated rats showed a depletion in microglial population and [(18)F]FSPG PET signal in spinal cord confirming a link between neuroinflammatory reaction and cystine/glutamate antiporter activity in EAE rats. CONCLUSIONS: Altogether, these results suggest that in vivo PET imaging of system xc(-) could become a valuable tool for the diagnosis and treatment evaluation of MS.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Magnetic Resonance Imaging , Multimodal Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/metabolism , Positron-Emission Tomography , Animals , Carrier Proteins/metabolism , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/pathology , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation , Glucose/metabolism , Male , Microglia/metabolism , Microglia/pathology , Organ Size , Rats , Receptors, GABA-A/metabolism
12.
J Neurosci ; 35(15): 5998-6009, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25878273

ABSTRACT

PET imaging of nicotinic acetylcholine receptors (nAChRs) could become an effective tool for the diagnosis and therapy evaluation of neurologic diseases. Despite this, the role of nAChRs α4ß2 receptors after brain diseases such as cerebral ischemia and its involvement in inflammatory reaction is still largely unknown. To investigate this, we performed in parallel in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) with 2[(18)F]-fluoro-A85380 and [(11)C]PK11195 at 1, 3, 7, 14, 21, and 28 d after middle cerebral artery occlusion (MCAO) in rats. In the ischemic territory, PET with 2[(18)F]-fluoro-A85380 and [(11)C]PK11195 showed a progressive binding increase from days 3-7, followed by a progressive decrease from days 14-28 after cerebral ischemia onset. Ex vivo immunohistochemistry for the nicotinic α4ß2 receptor and the mitochondrial translocator protein (18 kDa) (TSPO) confirmed the PET findings and demonstrated the overexpression of α4ß2 receptors in both microglia/macrophages and astrocytes from days 7-28 after experimental ischemic stroke. Likewise, the role played by α4ß2 receptors on neuroinflammation was supported by the increase of [(11)C]PK11195 binding in ischemic rats treated with the α4ß2 antagonist dihydro-ß-erythroidine hydrobromide (DHBE) at day 7 after MCAO. Finally, both functional and behavioral testing showed major impaired outcome at day 1 after ischemia onset, followed by a recovery of the sensorimotor function and dexterity from days 21-28 after experimental stroke. Together, these results suggest that the nicotinic α4ß2 receptor could have a key role in the inflammatory reaction underlying cerebral ischemia in rats.


Subject(s)
Encephalitis/diagnostic imaging , Encephalitis/etiology , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/diagnostic imaging , Positron-Emission Tomography , Receptors, Nicotinic/metabolism , Amides , Animals , Brain/metabolism , Brain/pathology , CD11b Antigen/metabolism , Cell Count , Dihydro-beta-Erythroidine/pharmacology , Dihydro-beta-Erythroidine/therapeutic use , Disease Models, Animal , Encephalitis/drug therapy , Fluorodeoxyglucose F18 , Glial Fibrillary Acidic Protein/metabolism , Infarction, Middle Cerebral Artery/pathology , Isoquinolines , Magnetic Resonance Imaging , Male , Mental Disorders/etiology , Protein Binding/drug effects , Psychomotor Performance , Rats , Rats, Sprague-Dawley , Time Factors
13.
Small ; 10(24): 5054-67, 2014 Dec 29.
Article in English | MEDLINE | ID: mdl-25123704

ABSTRACT

The success of nanoparticle-based therapies will depend in part on accurate delivery to target receptors and organs. There is, therefore, considerable potential in nanoparticles which achieve delivery of the right drug(s) using the right route of administration to the right location at the right time, monitoring the process by non-invasive molecular imaging. A challenge is harnessing immunotherapy via activation of Toll-like receptors (TLRs) for the development of vaccines against major infectious diseases and cancer. In immunotherapy, delivery of the vaccine components to lymph nodes (LNs) is essential for effective stimulation of the immune response. Although some promising advances have been made, delivering therapeutics to LNs remains challenging. It is here shown that iron-oxide nanoparticles can be engineered to combine in a single and small (<50 nm) nanocarrier complementary multimodal imaging features with the immunostimulatory activity of polyinosinic-polycytidylic acid (poly (I:C)). Whilst the fluorescence properties of the nanocarrier show effective delivery to endosomes and TLR3 in antigen presenting cells, MRI/SPECT imaging reveals effective delivery to LNs. Importantly, in vitro and in vivo studies show that, using this nanocarrier, the immunostimulatory activity of poly (I:C) is greatly enhanced. These nanocarriers have considerable potential for cancer diagnosis and the development of new targeted and programmable immunotherapies.


Subject(s)
Drug Carriers , Ferric Compounds/administration & dosage , Immune System/drug effects , Lymph Nodes/drug effects , Nanoparticles , RNA, Double-Stranded/administration & dosage , Animals , Cell Line , Immune System/immunology , Mice , Mice, Inbred BALB C
14.
J Clin Invest ; 124(8): 3645-55, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25036707

ABSTRACT

During brain ischemia, an excessive release of glutamate triggers neuronal death through the overactivation of NMDA receptors (NMDARs); however, the underlying pathways that alter glutamate homeostasis and whether synaptic or extrasynaptic sites are responsible for excess glutamate remain controversial. Here, we monitored ischemia-gated currents in pyramidal cortical neurons in brain slices from rodents in response to oxygen and glucose deprivation (OGD) as a real-time glutamate sensor to identify the source of glutamate release and determined the extent of neuronal damage. Blockade of excitatory amino acid transporters or vesicular glutamate release did not inhibit ischemia-gated currents or neuronal damage after OGD. In contrast, pharmacological inhibition of the cystine/glutamate antiporter dramatically attenuated ischemia-gated currents and cell death after OGD. Compared with control animals, mice lacking a functional cystine/glutamate antiporter exhibited reduced anoxic depolarization and neuronal death in response to OGD. Furthermore, glutamate released by the cystine/glutamate antiporter activated extrasynaptic, but not synaptic, NMDARs, and blockade of extrasynaptic NMDARs reduced ischemia-gated currents and cell damage after OGD. Finally, PET imaging showed increased cystine/glutamate antiporter function in ischemic rats. Altogether, these data suggest that cystine/glutamate antiporter function is increased in ischemia, contributing to elevated extracellular glutamate concentration, overactivation of extrasynaptic NMDARs, and ischemic neuronal death.


Subject(s)
Amino Acid Transport System y+/physiology , Brain Ischemia/etiology , Glutamic Acid/metabolism , Amino Acid Transport System y+/deficiency , Amino Acid Transport System y+/genetics , Animals , Benzoates/pharmacology , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cell Death , Glutamate Plasma Membrane Transport Proteins/antagonists & inhibitors , Glutamate Plasma Membrane Transport Proteins/metabolism , Glycine/analogs & derivatives , Glycine/pharmacology , Ion Channel Gating/physiology , Mice , Mice, Inbred C3H , Mice, Knockout , Pyramidal Cells/drug effects , Pyramidal Cells/pathology , Pyramidal Cells/physiology , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Vesicular Glutamate Transport Proteins/antagonists & inhibitors , Vesicular Glutamate Transport Proteins/physiology
15.
J Cereb Blood Flow Metab ; 33(12): 1967-75, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23982048

ABSTRACT

The use of selective serotonin reuptake inhibitors has shown functional improvement after stroke. Despite this, the role of serotoninergic neurotransmission after cerebral ischemia evolution and its involvement in functional recovery processes are still largely unknown. For this purpose, we performed in parallel in vivo magnetic resonance imaging and positron emission tomography (PET) with [(11)C]DASB and [(18)F]altanserin at 1, 3, 7, 14, 21, and 28 days after middle cerebral artery occlusion (MCAO) in rats. In the ischemic territory, PET with [(11)C]DASB and [(18)F]altanserin showed a dramatic decline in serotonin transporter (SERT) and 5-HT2A binding potential in the cortex and striatum after cerebral ischemia. Interestingly, a slight increase in [(11)C]DASB binding was observed from days 7 to 21 followed by the uppermost binding at day 28 in the ipsilateral midbrain. In contrast, no changes were observed in the contralateral hemisphere by using both radiotracers. Likewise, both functional and behavior testing showed major impaired outcome at day 1 after ischemia onset followed by a recovery of the sensorimotor function and dexterity from day 21 to day 28 after cerebral ischemia. Taken together, these results might evidence that SERT changes in the midbrain could have a key role in the functional recovery process after cerebral ischemia.


Subject(s)
Benzylamines , Brain Ischemia/diagnostic imaging , Brain/diagnostic imaging , Contrast Media , Ketanserin/analogs & derivatives , Positron-Emission Tomography/methods , Serotonin/metabolism , Animals , Brain/blood supply , Brain/metabolism , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Carbon Radioisotopes , Fluorine Radioisotopes , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Rats , Serotonin/analysis , Serotonin Plasma Membrane Transport Proteins/analysis , Serotonin Plasma Membrane Transport Proteins/metabolism , Synaptic Transmission
16.
J Fluoresc ; 20(3): 719-31, 2010 May.
Article in English | MEDLINE | ID: mdl-20179998

ABSTRACT

The in-situ, non-contact, and non-destructive measurement of the physicochemical properties such as the polarity of thin, hydrophilic polymer films is desirable in many areas of polymer science. Polarity is a complex factor and encompasses a range of non-covalent interactions including dipolarity/polarizability and hydrogen bonding. A polarity measurement method based on fluorescence would be ideal, but the key challenge is to identify suitable probes which can accurately measure specific polarity related parameters. In this manuscript we assess a variety of fluorophores for measuring the polarity of a series of relatively hydrophilic, thermoresponsive N-isopropylacrylamide/N-tert-butylacrylamide (NIPAM/NtBA) copolymers. The emission properties of both pyrene and 3-Hydroxyflavone (3-HF) based fluorophores were measured in dry polymer films. In the case of pyrene, a relatively weak, linear relationship between polymer composition and the ratio of the first to the third vibronic band of the emission spectrum (I(1)/I(3)) is observed, but pyrene emission is very sensitive to temperature and thus not suitable for robust polarity measurements. The 3-HF fluorophores which can undergo an excited-state intramolecular proton transfer (ESIPT) reaction have a dual band fluorescence emission that exhibits strong solvatochromism. Here we used 4'-diethylamino-3-hydroxyflavone (FE), 5,6-benzo-4'-diethylamino-3-hydroxyflavone (BFE), and 4 -diethylamino-3-hydroxy-7-methoxyflavone (MFE). The log ratio of the dual band fluorescence emission (log (I(N*)/I(T*))) of 3-HF doped, dry, NIPAM-NtBA copolymer films were found to depend linearly on copolymer composition, with increasing hydrophobicity (greater NtBA fraction) leading to a decrease in the value of log (I(N*)/I(T*)). However, the ESIPT process in the polymer matrix was found to be irreversible, non-equilibrated and occurs over a much longer timescale in comparison to the results previously reported for liquid solvents.


Subject(s)
Fluorescent Dyes/chemistry , Polymers/chemistry , Acrylamides , Acrylic Resins , Dosage Forms , Flavones , Flavonoids , Fluorescence , Hydrogen Bonding , Protons , Pyrenes , Solvents/chemistry , Temperature
17.
Appl Spectrosc ; 63(4): 442-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19366511

ABSTRACT

Thin polymer films are important in many areas of biomaterials research, biomedical devices, and biological sensors. The accurate in situ measurement of multiple physicochemical properties of thin polymer films is critical in understanding biocompatibility, polymer function, and performance. In this work we demonstrate a facile spectroscopic methodology for accurately measuring the micro-polarity and hydrogen-bond donor/acceptor ability for a series of relatively hydrophilic thermoresponsive copolymers. The micro-polarity of the N-isopropylacrylamide (NIPAM) and N-tert-butylacrylamide (NtBA) co-polymers was evaluated by means of the E(T)(30), alpha, beta, and pi empirical solvatochromic polarity parameters. The data shows that increasing the NtBA fraction in the dry copolymer film reduces polarity and hydrogen-bonding ability. Within the Kamlet-Taft polarity framework, the NIPAM/NtBA copolymer films are strong hydrogen-bond acceptors, strongly dipolar/polarizable, and rather moderate hydrogen-bond donors. This characterization provides a more comprehensive physicochemical description of polymers, which aids the interpretation of film performance. Comparison of the measured E(T)(30) values with literature data for other water-soluble polymers show that dry NIPAM/NtBA copolymers are slightly more polar than poly(ethylene oxide), less polar than polyvinylalcohol, and approximately the same polarity as poly(N-vinyl-2-pyrrolidone). These findings indicate that this spectroscopic method is a facile, rapid, and nondestructive methodology for measuring polymer properties in situ, suitable for most biomaterials research laboratories.


Subject(s)
Acrylamides/chemistry , Hydrogen Bonding , Solvents/chemistry , Spectrophotometry , Spectrophotometry, Ultraviolet , Temperature
18.
J Phys Chem A ; 113(12): 2757-67, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19254018

ABSTRACT

Fluorescein is one of most used fluorescent labels for characterizing biological systems, such as proteins, and is used in fluorescence microscopy. However, if fluorescein is to be used for quantitative measurements involving proteins then one must account for the fact that the fluorescence of fluorescein-labeled protein can be affected by the presence of intrinsic amino acids residues, such as tryptophan (Trp). There is a lack of quantitative information to explain in detail the specific processes that are involved, and this makes it difficult to evaluate quantitatively the photophysics of fluorescein-labeled proteins. To address this, we have explored the fluorescence of fluorescein in buffered solutions, in different acidic and basic conditions, and at varied concentrations of tryptophan derivatives, using steady-state absorption and fluorescence spectroscopy, combined with fluorescence lifetime measurements. Stern-Volmer analyses show the presence of static and dynamic quenching processes between fluorescein and tryptophan derivatives. Nonfluorescent complexes with low association constants (5.0-24.1 M(-1)) are observed at all pH values studied. At low pH values, however, an additional static quenching contribution by a sphere-of-action (SOA) mechanism was found. The possibility of a proton transfer mechanism being involved in the SOA static quenching, at low pH, is discussed based on the presence of the different fluorescein prototropic species. For the dynamic quenching process, the bimolecular rate constants obtained (2.5-5.3 x 10(9) M(-1)s(-1)) were close to the Debye-Smoluchowski diffusion rate constants. In the encounter controlled reaction mechanism, a photoinduced electron transfer process was applied using the reduction potentials and charges of the fluorophore and quencher, in addition to the ionic strength of the environment. The electron transfer rate constants (2.3-6.7 x 10(9) s(-1)) and the electronic coupling values (5.7-25.1 cm(-1)) for fluorescein fluorescence quenching by tryptophan derivatives in the encounter complex were then obtained and analyzed.


Subject(s)
Fluorescein/chemistry , Fluorescence , Tryptophan/chemistry , Hydrogen-Ion Concentration , Kinetics , Peptide Hydrolases/metabolism , Spectrometry, Fluorescence
19.
Appl Spectrosc ; 58(9): 1106-15, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15479528

ABSTRACT

Time-resolved fluorescence data was collected from a series of 23 bulk crude petroleum oils and six microscopic hydrocarbon-bearing fluid inclusions (HCFI). The data was collected using a diode laser fluorescence lifetime microscope (DLFLM) over the 460-700 nm spectral range using a 405 nm excitation source. The correlation between intensity averaged lifetimes (tau) and chemical and physical parameters was examined with a view to developing a quantitative model for predicting the gross chemical composition of hydrocarbon liquids trapped in HCFI. It was found that tau is nonlinearly correlated with the measured polar and corrected alkane concentrations and that oils can be classified on this basis. However, these correlations all show a large degree of scatter, preventing accurate quantitative prediction of gross chemical composition of the oils. Other parameters such as API gravity and asphaltene, aromatic, and sulfur concentrations do not correlate well with tau measurements. Individual HCFI were analyzed using the DLFLM, and time-resolved fluorescence measurements were compared with tau data from the bulk oils. This enabled the fluid within the inclusions to be classified as either low alkane/high polar or high alkane/low polar. Within the high alkane/low polar group, it was possible to clearly discriminate HCFI from different locales and to see differences in the trapped hydrocarbon fluids from a single geological source. This methodology offers an alternative method for classifying the hydrocarbon content of HCFI and observing small variations in the trapped fluid composition that is less sensitive to fluctuations in the measurement method than fluorescence intensity based methods.


Subject(s)
Complex Mixtures/analysis , Hydrocarbons/analysis , Hydrocarbons/chemistry , Microscopy, Fluorescence/methods , Petroleum/analysis , Colloids/analysis , Colloids/chemistry , Complex Mixtures/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL