Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Hum Mol Genet ; 33(2): 150-169, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-37815931

ABSTRACT

Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.


Subject(s)
Heart Defects, Congenital , Zebrafish , Animals , Humans , Cell Polarity/genetics , Germ Cells/metabolism , Germ-Line Mutation/genetics , Heart Defects, Congenital/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
2.
EMBO Mol Med ; 15(2): e16478, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36652330

ABSTRACT

Exome sequencing has introduced a paradigm shift for the identification of germline variations responsible for Mendelian diseases. However, non-coding regions, which make up 98% of the genome, cannot be captured. The lack of functional annotation for intronic and intergenic variants makes RNA-seq a powerful companion diagnostic. Here, we illustrate this point by identifying six patients with a recessive Osteogenesis Imperfecta (OI) and neonatal progeria syndrome. By integrating homozygosity mapping and RNA-seq, we delineated a deep intronic TAPT1 mutation (c.1237-52 G>A) that segregated with the disease. Using SI-NET-seq, we document that TAPT1's nascent transcription was not affected in patients' fibroblasts, indicating instead that this variant leads to an alteration of pre-mRNA processing. Predicted to serve as an alternative splicing branchpoint, this mutation enhances TAPT1 exon 12 skipping, creating a protein-null allele. Additionally, our study reveals dysregulation of pathways involved in collagen and extracellular matrix biology in disease-relevant cells. Overall, our work highlights the power of transcriptomic approaches in deciphering the repercussions of non-coding variants, as well as in illuminating the molecular mechanisms of human diseases.


Subject(s)
Exome Sequencing , Humans , Infant, Newborn , Base Sequence , Exons , Mutation , RNA, Messenger/genetics
3.
Dev Cell ; 57(13): 1598-1614.e8, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35679862

ABSTRACT

The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.


Subject(s)
Mesenchymal Stem Cells , Organogenesis , Humans , Lung , Organoids , Wnt Signaling Pathway
5.
Nat Genet ; 54(1): 62-72, 2022 01.
Article in English | MEDLINE | ID: mdl-34903892

ABSTRACT

The vertebrate left-right axis is specified during embryogenesis by a transient organ: the left-right organizer (LRO). Species including fish, amphibians, rodents and humans deploy motile cilia in the LRO to break bilateral symmetry, while reptiles, birds, even-toed mammals and cetaceans are believed to have LROs without motile cilia. We searched for genes whose loss during vertebrate evolution follows this pattern and identified five genes encoding extracellular proteins, including a putative protease with hitherto unknown functions that we named ciliated left-right organizer metallopeptide (CIROP). Here, we show that CIROP is specifically expressed in ciliated LROs. In zebrafish and Xenopus, CIROP is required solely on the left side, downstream of the leftward flow, but upstream of DAND5, the first asymmetrically expressed gene. We further ascertained 21 human patients with loss-of-function CIROP mutations presenting with recessive situs anomalies. Our findings posit the existence of an ancestral genetic module that has twice disappeared during vertebrate evolution but remains essential for distinguishing left from right in humans.


Subject(s)
Biological Evolution , Body Patterning , Gene Regulatory Networks , Metalloproteases , Animals , Humans , Body Patterning/genetics , Body Patterning/physiology , Cilia/genetics , Loss of Function Mutation , Metalloproteases/genetics , Metalloproteases/physiology , Proteins/genetics , Proteins/physiology , Vertebrates/genetics
6.
N Engl J Med ; 385(14): 1292-1301, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34587386

ABSTRACT

BACKGROUND: Structural birth defects occur in approximately 3% of live births; most such defects lack defined genetic or environmental causes. Despite advances in surgical approaches, pharmacologic prevention remains largely out of reach. METHODS: We queried worldwide databases of 20,248 families that included children with neurodevelopmental disorders and that were enriched for parental consanguinity. Approximately one third of affected children in these families presented with structural birth defects or microcephaly. We performed exome or genome sequencing of samples obtained from the children, their parents, or both to identify genes with biallelic pathogenic or likely pathogenic mutations present in more than one family. After identifying disease-causing variants, we generated two mouse models, each with a pathogenic variant "knocked in," to study mechanisms and test candidate treatments. We administered a small-molecule Wnt agonist to pregnant animals and assessed their offspring. RESULTS: We identified homozygous mutations in WLS, which encodes the Wnt ligand secretion mediator (also known as Wntless or WLS) in 10 affected persons from 5 unrelated families. (The Wnt ligand secretion mediator is essential for the secretion of all Wnt proteins.) Patients had multiorgan defects, including microcephaly and facial dysmorphism as well as foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Administration of a pharmacologic Wnt agonist partially restored embryonic development. CONCLUSIONS: Genetic variations affecting a central Wnt regulator caused syndromic structural birth defects. Results from mouse models suggest that what we have named Zaki syndrome is a potentially preventable disorder. (Funded by the National Institutes of Health and others.).


Subject(s)
Abnormalities, Multiple/genetics , Congenital Abnormalities/genetics , Genetic Pleiotropy , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Receptors, G-Protein-Coupled/genetics , Wnt Proteins/metabolism , Animals , Disease Models, Animal , Fibroblasts/metabolism , Gene Knock-In Techniques , Genes, Recessive , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Transgenic , Pedigree , Phenotype , Receptors, G-Protein-Coupled/metabolism , Syndrome , Wnt Signaling Pathway
7.
Hum Mutat ; 41(12): 2167-2178, 2020 12.
Article in English | MEDLINE | ID: mdl-33131162

ABSTRACT

Herein, we report the screening of a large panel of genes in a series of 80 fetuses with congenital heart defects (CHDs) and/or heterotaxy and no cytogenetic anomalies. There were 49 males (61%/39%), with a family history in 28 cases (35%) and no parental consanguinity in 77 cases (96%). All fetuses had complex CHD except one who had heterotaxy and midline anomalies while 52 cases (65%) had heterotaxy in addition to CHD. Altogether, 29 cases (36%) had extracardiac and extra-heterotaxy anomalies. A pathogenic variant was found in 10/80 (12.5%) cases with a higher percentage in the heterotaxy group (8/52 cases, 15%) compared with the non-heterotaxy group (2/28 cases, 7%), and in 3 cases with extracardiac and extra-heterotaxy anomalies (3/29, 10%). The inheritance was recessive in six genes (DNAI1, GDF1, MMP21, MYH6, NEK8, and ZIC3) and dominant in two genes (SHH and TAB2). A homozygous pathogenic variant was found in three cases including only one case with known consanguinity. In conclusion, after removing fetuses with cytogenetic anomalies, next-generation sequencing discovered a causal variant in 12.5% of fetal cases with CHD and/or heterotaxy. Genetic counseling for future pregnancies was greatly improved. Surprisingly, unexpected consanguinity accounts for 20% of cases with identified pathogenic variants.


Subject(s)
Fetus/abnormalities , Heart Defects, Congenital/genetics , Heterotaxy Syndrome/genetics , High-Throughput Nucleotide Sequencing , Cytogenetic Analysis , Family , Female , Heterozygote , Homozygote , Humans , Male , Mutation/genetics , Pedigree
8.
Elife ; 92020 05 01.
Article in English | MEDLINE | ID: mdl-32324134

ABSTRACT

During kidney development, WNT/ß-catenin signalling has to be tightly controlled to ensure proliferation and differentiation of nephron progenitor cells. Here, we show in mice that the signalling molecules RSPO1 and RSPO3 act in a functionally redundant manner to permit WNT/ß-catenin signalling and their genetic deletion leads to a rapid decline of nephron progenitors. By contrast, tissue specific deletion in cap mesenchymal cells abolishes mesenchyme to epithelial transition (MET) that is linked to a loss of Bmp7 expression, absence of SMAD1/5 phosphorylation and a concomitant failure to activate Lef1, Fgf8 and Wnt4, thus explaining the observed phenotype on a molecular level. Surprisingly, the full knockout of LGR4/5/6, the cognate receptors of R-spondins, only mildly affects progenitor numbers, but does not interfere with MET. Taken together our data demonstrate key roles for R-spondins in permitting stem cell maintenance and differentiation and reveal Lgr-dependent and independent functions for these ligands during kidney formation.


Kidneys filter waste out of the bloodstream to produce urine. Each kidney contains many structures called nephrons which separate the waste from the blood. The number of nephrons in a kidney varies between people, and those with low numbers have a higher risk of chronic kidney disease. Nephrons are formed before birth from a specific group of so-called progenitor cells. Each of these cells can either divide to make others like itself, or it can specialize to make nephron cells. At the end of embryonic kidney development, all the progenitor cells become nephron cells. Cells that specialize to become part of a nephron first go through a change called a mesenchyme-to-epithelial transition. Epithelial cells move less than mesenchymal cells, and also develop a clear structure where the two ends of the cell adapt to different roles. Evidence suggests that a cell communication process called WNT/ß-catenin signaling controls this transition. Yet the details of how this transition is controlled are not fully understood. One way to activate WNT/ß-catenin signaling is with R-spondin proteins, which have been found in developing kidneys. Vidal et al. studied R-spondins during the embryonic development of kidneys in mice. Removing R-spondins stopped the progenitor cells from producing more of themselves and increased the number that died. The R-spondins were also needed for the progenitor cells to specialize as nephron cells through the mesenchyme-to-epithelial transition. Further results revealed that R-spondins activate WNT/ß-catenin signaling in these cells, even though the proteins that usually act as R-spondin receptors (called LGR4/5/6) could be removed without affecting the results. This suggests that R-spondins interact with different receptor proteins during kidney development. These findings highlight the role of R-spondins and WNT/ß-catenin signaling in kidney development. Future studies will seek the receptor proteins that R-spondins interact with in kidneys. They may also look to understand how R-spondins balance their different roles in progenitor cells and during cell specialization. These results in mice could also be extended to determine their relevance in human health and disease, including chronic kidney disease, which is responsible for more deaths than breast or prostate cancer.


Subject(s)
Kidney/embryology , Nephrons/cytology , Stem Cells/cytology , Thrombospondins/physiology , Animals , Cell Differentiation , Epithelial-Mesenchymal Transition , Female , Mice , Nephrons/embryology , Receptors, G-Protein-Coupled/physiology , Signal Transduction/physiology , Wnt Signaling Pathway
9.
Clin Genet ; 97(6): 915-919, 2020 06.
Article in English | MEDLINE | ID: mdl-32112393

ABSTRACT

Variants in transcriptional activator Gli Kruppel Family Member 3 (GLI3) have been reported to be associated with several phenotypes including Greig cephalopolysyndactyly syndrome (MIM #175700), Pallister-Hall syndrome (PHS) (MIM #146510), postaxial polydactyly types A1 (PAPA1) and B (PAPB) (MIM #174200), and preaxial polydactyly type 4 (MIM #174700). All these disorders follow an autosomal dominant pattern of inheritance. Hypothalamic hamartomas (MIM 241800) is associated with somatic variants in GLI3. We report a related couple with parents having PAPA1 and PAPB, who had a fetus with a phenotype most compatible with PHS. Molecular analyses demonstrated homozygosity for a pathogenic GLI3 variant (c.1927C > T; p. Arg643*) in the fetus and heterozygosity in the parents. The genetic analysis in this family demonstrates that heterozygosity and homozygosity for the same GLI3 variant can cause a different phenotype. Furthermore, the occurrence of Pallister-Hall-like syndrome in a homozygous patient should be taken into account in genetic counseling of families with PAPA1/PAPB.


Subject(s)
Abnormalities, Multiple/genetics , Fingers/abnormalities , Nerve Tissue Proteins/genetics , Pallister-Hall Syndrome/genetics , Polydactyly/genetics , Toes/abnormalities , Zinc Finger Protein Gli3/genetics , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/pathology , Aborted Fetus/diagnostic imaging , Aborted Fetus/pathology , Adult , Female , Fingers/diagnostic imaging , Fingers/pathology , Heterozygote , Homozygote , Humans , Male , Pallister-Hall Syndrome/complications , Pallister-Hall Syndrome/diagnostic imaging , Pallister-Hall Syndrome/pathology , Pedigree , Phenotype , Polydactyly/complications , Polydactyly/diagnostic imaging , Polydactyly/pathology , Toes/diagnostic imaging , Toes/pathology
10.
Nat Commun ; 11(1): 595, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001716

ABSTRACT

Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients' primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy.


Subject(s)
Epilepsy/genetics , Genes, Recessive , Loss of Function Mutation/genetics , Oxidoreductases/genetics , Uridine Diphosphate Glucose Dehydrogenase/genetics , Adolescent , Alleles , Animals , Child , Child, Preschool , Female , Humans , Infant , Kinetics , Male , Organoids/pathology , Oxidoreductases/chemistry , Pedigree , Protein Domains , Syndrome , Zebrafish
11.
Am J Hum Genet ; 105(6): 1294-1301, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31761294

ABSTRACT

The development of hindlimbs in tetrapod species relies specifically on the transcription factor TBX4. In humans, heterozygous loss-of-function TBX4 mutations cause dominant small patella syndrome (SPS) due to haploinsufficiency. Here, we characterize a striking clinical entity in four fetuses with complete posterior amelia with pelvis and pulmonary hypoplasia (PAPPA). Through exome sequencing, we find that PAPPA syndrome is caused by homozygous TBX4 inactivating mutations during embryogenesis in humans. In two consanguineous couples, we uncover distinct germline TBX4 coding mutations, p.Tyr113∗ and p.Tyr127Asn, that segregated with SPS in heterozygous parents and with posterior amelia with pelvis and pulmonary hypoplasia syndrome (PAPPAS) in one available homozygous fetus. A complete absence of TBX4 transcripts in this proband with biallelic p.Tyr113∗ stop-gain mutations revealed nonsense-mediated decay of the endogenous mRNA. CRISPR/Cas9-mediated TBX4 deletion in Xenopus embryos confirmed its restricted role during leg development. We conclude that SPS and PAPPAS are allelic diseases of TBX4 deficiency and that TBX4 is an essential transcription factor for organogenesis of the lungs, pelvis, and hindlimbs in humans.


Subject(s)
Abnormalities, Multiple/etiology , Bone Diseases, Developmental/etiology , Ectromelia/etiology , Hip/abnormalities , Homozygote , Ischium/abnormalities , Loss of Function Mutation , Lung Diseases/etiology , Lung/abnormalities , Patella/abnormalities , Pelvis/abnormalities , T-Box Domain Proteins/genetics , Abnormalities, Multiple/pathology , Adolescent , Bone Diseases, Developmental/pathology , Child , Ectromelia/pathology , Female , Hip/pathology , Humans , Ischium/pathology , Lung/pathology , Lung Diseases/pathology , Male , Patella/pathology , Pedigree , Pelvis/pathology , Prognosis
12.
Nature ; 561(7722): E7, 2018 09.
Article in English | MEDLINE | ID: mdl-29977062

ABSTRACT

In this Letter, the surname of author Lena Vlaminck was misspelled 'Vlaeminck'. In addition, author Kris Vleminckx should have been associated with affiliation 16 (Center for Medical Genetics, Ghent University, Ghent, Belgium). These have been corrected online.

13.
Nature ; 557(7706): 564-569, 2018 05.
Article in English | MEDLINE | ID: mdl-29769720

ABSTRACT

The four R-spondin secreted ligands (RSPO1-RSPO4) act via their cognate LGR4, LGR5 and LGR6 receptors to amplify WNT signalling1-3. Here we report an allelic series of recessive RSPO2 mutations in humans that cause tetra-amelia syndrome, which is characterized by lung aplasia and a total absence of the four limbs. Functional studies revealed impaired binding to the LGR4/5/6 receptors and the RNF43 and ZNRF3 transmembrane ligases, and reduced WNT potentiation, which correlated with allele severity. Unexpectedly, however, the triple and ubiquitous knockout of Lgr4, Lgr5 and Lgr6 in mice did not recapitulate the known Rspo2 or Rspo3 loss-of-function phenotypes. Moreover, endogenous depletion or addition of exogenous RSPO2 or RSPO3 in triple-knockout Lgr4/5/6 cells could still affect WNT responsiveness. Instead, we found that the concurrent deletion of rnf43 and znrf3 in Xenopus embryos was sufficient to trigger the outgrowth of supernumerary limbs. Our results establish that RSPO2, without the LGR4/5/6 receptors, serves as a direct antagonistic ligand to RNF43 and ZNRF3, which together constitute a master switch that governs limb specification. These findings have direct implications for regenerative medicine and WNT-associated cancers.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Extremities/embryology , Intercellular Signaling Peptides and Proteins/metabolism , Limb Deformities, Congenital/genetics , Receptors, G-Protein-Coupled/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Animals , DNA-Binding Proteins/metabolism , Female , Fibroblasts , Gene Knockout Techniques , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/metabolism , Phenotype , Receptors, G-Protein-Coupled/deficiency , Ubiquitin-Protein Ligases/metabolism , Xenopus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...