Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Digit Med ; 5(1): 189, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550288

ABSTRACT

Human bodily mechanisms and functions produce low-frequency vibrations. Our ability to perceive these vibrations is limited by our range of hearing. However, in-ear infrasonic hemodynography (IH) can measure low-frequency vibrations (<20 Hz) created by vital organs as an acoustic waveform. This is captured using a technology that can be embedded into wearable devices such as in-ear headphones. IH can acquire sound signals that travel within arteries, fluids, bones, and muscles in proximity to the ear canal, allowing for measurements of an individual's unique audiome. We describe the heart rate and heart rhythm results obtained in time-series analysis of the in-ear IH data taken simultaneously with ECG recordings in two dedicated clinical studies. We demonstrate a high correlation (r = 0.99) between IH and ECG acquired interbeat interval and heart rate measurements and show that IH can continuously monitor physiological changes in heart rate induced by various breathing exercises. We also show that IH can differentiate between atrial fibrillation and sinus rhythm with performance similar to ECG. The results represent a demonstration of IH capabilities to deliver accurate heart rate and heart rhythm measurements comparable to ECG, in a wearable form factor. The development of IH shows promise for monitoring acoustic imprints of the human body that will enable new real-time applications in cardiovascular health that are continuous and noninvasive.

3.
Sci Data ; 7(1): 89, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32161264

ABSTRACT

Mining, water-reservoir impoundment, underground gas storage, geothermal energy exploitation and hydrocarbon extraction have the potential to cause rock deformation and earthquakes, which may be hazardous for people, infrastructure and the environment. Restricted access to data constitutes a barrier to assessing and mitigating the associated hazards. Thematic Core Service Anthropogenic Hazards (TCS AH) of the European Plate Observing System (EPOS) provides a novel e-research infrastructure. The core of this infrastructure, the IS-EPOS Platform (tcs.ah-epos.eu) connected to international data storage nodes offers open access to large grouped datasets (here termed episodes), comprising geoscientific and associated data from industrial activity along with a large set of embedded applications for their efficient data processing, analysis and visualization. The novel team-working features of the IS-EPOS Platform facilitate collaborative and interdisciplinary scientific research, public understanding of science, citizen science applications, knowledge dissemination, data-informed policy-making and the teaching of anthropogenic hazards related to georesource exploitation. TCS AH is one of 10 thematic core services forming EPOS, a solid earth science European Research Infrastructure Consortium (ERIC) (www.epos-ip.org).

4.
Chem Biodivers ; 6(12): 2311-36, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20020465

ABSTRACT

The three-dimensional structures of a set of 'never born proteins' (NBP, random amino acid sequence proteins with no significant homology with known proteins) were predicted using two methods: Rosetta and the one based on the 'fuzzy-oil-drop' (FOD) model. More than 3000 different random amino acid sequences have been generated, filtered against the non redundant protein sequence data base, to remove sequences with significant homology with known proteins, and subjected to three-dimensional structure prediction. Comparison between Rosetta and FOD predictions allowed to select the ten top (highest structural similarity) and the ten bottom (the lowest structural similarity) structures from the ranking list organized according to the RMS-D value. The selected structures were taken for detailed analysis to define the scale of structural accordance and discrepancy between the two methods. The structural similarity measurements revealed discrepancies between structures generated on the basis of the two methods. Their potential biological function appeared to be quite different as well. The ten bottom structures appeared to be 'unfoldable' for the FOD model. Some aspects of the general characteristics of the NBPs are also discussed. The calculations were performed on the EUChinaGRID grid platform to test the performance of this infrastructure for massive protein structure predictions.


Subject(s)
Models, Molecular , Proteins/chemistry , Algorithms , Amino Acid Sequence , Catalytic Domain , Molecular Sequence Data , Protein Structure, Secondary
5.
Bioinformation ; 3(4): 177-9, 2008.
Article in English | MEDLINE | ID: mdl-19238243

ABSTRACT

The number of natural proteins although large is significantly smaller than the theoretical number of proteins that can be obtained combining the 20 natural amino acids, the so-called "never born proteins" (NBPs). The study of the structure and properties of these proteins allows to investigate the sources of the natural proteins being of unique characteristics or special properties. However the structural study of NPBs can also been intended as an ideal test for evaluating the efficiency of software packages for the ab initio protein structure prediction. In this research, 10.000 three-dimensional structures of proteins of completely random sequence generated according to ROSETTA and FOD model were compared. The results show the limits of these software packages, but at the same time indicate that in many cases there is a significant agreement between the prediction obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...