Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cancers (Basel) ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36765865

ABSTRACT

Analysis of circulating cell-free DNA (cfDNA) of colorectal adenoma (AD) and cancer (CRC) patients provides a minimally invasive approach that is able to explore genetic alterations. It is unknown whether there are specific genetic variants that could explain the high prevalence of CRC in Hungary. Whole-exome sequencing (WES) was performed on colon tissues (27 AD, 51 CRC) and matched cfDNAs (17 AD, 33 CRC); furthermore, targeted panel sequencing was performed on a subset of cfDNA samples. The most frequently mutated genes were APC, KRAS, and FBN3 in AD, while APC, TP53, TTN, and KRAS were the most frequently mutated in CRC tissue. Variants in KRAS codons 12 (AD: 8/27, CRC: 11/51 (0.216)) and 13 (CRC: 3/51 (0.06)) were the most frequent in our sample set, with G12V (5/27) dominance in ADs and G12D (5/51 (0.098)) in CRCs. In terms of the cfDNA WES results, tumor somatic variants were found in 6/33 of CRC cases. Panel sequencing revealed somatic variants in 8 out of the 12 enrolled patients, identifying 12/20 tumor somatic variants falling on its targeted regions, while WES recovered only 20% in the respective regions in cfDNA of the same patients. In liquid biopsy analyses, WES is less efficient compared to the targeted panel sequencing with a higher coverage depth that can hold a relevant clinical potential to be applied in everyday practice in the future.

2.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232908

ABSTRACT

Long interspersed nuclear element 1 (LINE-1) bisulfite pyrosequencing is a widely used technique for genome-wide methylation analyses. We aimed to investigate the effects of experimental and biological factors on its results to improve the comparability. LINE-1 bisulfite pyrosequencing was performed on colorectal tissue (n = 222), buffy coat (n = 39), and plasma samples (n = 9) of healthy individuals and patients with colorectal tumors. Significantly altered methylation was observed between investigated LINE-1 CpG positions of non-tumorous tissues (p ≤ 0.01). Formalin-fixed, paraffin-embedded biopsies (73.0 ± 5.3%) resulted in lower methylation than fresh frozen samples (76.1 ± 2.8%) (p ≤ 0.01). DNA specimens after long-term storage showed higher methylation levels (+3.2%, p ≤ 0.01). In blood collection tubes with preservatives, cfDNA and buffy coat methylation significantly changed compared to K3EDTA tubes (p ≤ 0.05). Lower methylation was detected in older (>40 years, 76.8 ± 1.7%) vs. younger (78.1 ± 1.0%) female patients (p ≤ 0.05), and also in adenomatous tissues with MTHFR 677CT, or 1298AC mutations vs. wild-type (p ≤ 0.05) comparisons. Based on our findings, it is highly recommended to consider the application of standard DNA samples in the case of a possible clinical screening approach, as well as in experimental research studies.


Subject(s)
Cell-Free Nucleic Acids , Colorectal Neoplasms , Aged , Biological Factors , Biopsy , Cell-Free Nucleic Acids/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA/genetics , DNA Methylation , Female , Formaldehyde , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy , Long Interspersed Nucleotide Elements/genetics , Male , Sulfites
3.
Res Vet Sci ; 152: 442-445, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36126511

ABSTRACT

Seven dairy farms and a beef herd were sampled to reveal the presence of bovine viral diarrhoea viruses (BVDV) in the cattle population and provide information on the occurrence of the different genotypes of the virus in Hungary and Slovakia. Serum and organ samples, lung, and lymph nodes were collected and submitted to serological testing, RT-qPCR, nucleotide sequencing, and virus isolation. The detected viruses belonged to 1b, 1d, and 1f subtypes. No Pestivirus B was found. Serum samples of cows immunized with a live vaccine containing a subtype 1a virus (Oregon C24V) showed cross-neutralizing activity against the selected representative field strains of each subtype. An RT-qPCR, specific for the vaccine strain was developed to differentiate between vaccine and field viruses and was used to evaluate vaccine virus viraemia and shedding. The obtained data provide baseline information on the currently occurring BVDV genotypes in the region and contribute to elaborating efficient control strategies.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Cattle Diseases , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Pestivirus , Cattle , Animals , Diarrhea Virus 1, Bovine Viral/genetics , Pestivirus/genetics , Diarrhea Viruses, Bovine Viral/genetics , Genotype , Phylogeny , Cattle Diseases/epidemiology
4.
Pathol Oncol Res ; 28: 1610342, 2022.
Article in English | MEDLINE | ID: mdl-35928965

ABSTRACT

In recent years, the evolution of the molecular biological technical background led to the widespread application of single-cell sequencing, a versatile tool particularly useful in the investigation of tumor heterogeneity. Even 10 years ago the comprehensive characterization of colorectal cancers by The Cancer Genome Atlas was based on measurements of bulk samples. Nowadays, with single-cell approaches, tumor heterogeneity, the tumor microenvironment, and the interplay between tumor cells and their surroundings can be described in unprecedented detail. In this review article we aimed to emphasize the importance of single-cell analyses by presenting tumor heterogeneity and the limitations of conventional investigational approaches, followed by an overview of the whole single-cell analytic workflow from sample isolation to amplification, sequencing and bioinformatic analysis and a review of recent literature regarding the single-cell analysis of colorectal cancers.


Subject(s)
Colorectal Neoplasms , Single-Cell Analysis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Tumor Microenvironment
5.
BMC Cancer ; 22(1): 605, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35655145

ABSTRACT

BACKGROUND: Hypomethylation of long interspersed nuclear element 1 (LINE-1) is characteristic of various cancer types, including colorectal cancer (CRC). Malfunction of several factors or alteration of methyl-donor molecules' (folic acid and S-adenosylmethionine) availability can contribute to DNA methylation changes. Detection of epigenetic alterations in liquid biopsies can assist in the early recognition of CRC. Following the investigations of a Hungarian colon tissue sample set, our goal was to examine the LINE-1 methylation of blood samples along the colorectal adenoma-carcinoma sequence and in inflammatory bowel disease. Moreover, we aimed to explore the possible underlying mechanisms of global DNA hypomethylation formation on a multi-level aspect. METHODS: LINE-1 methylation of colon tissue (n = 183) and plasma (n = 48) samples of healthy controls and patients with colorectal tumours were examined with bisulfite pyrosequencing. To investigate mRNA expression, microarray analysis results were reanalysed in silico (n = 60). Immunohistochemistry staining was used to validate DNA methyltransferases (DNMTs) and folate receptor beta (FOLR2) expression along with the determination of methyl-donor molecules' in situ level (n = 40). RESULTS: Significantly decreased LINE-1 methylation level was observed in line with cancer progression both in tissue (adenoma: 72.7 ± 4.8%, and CRC: 69.7 ± 7.6% vs. normal: 77.5 ± 1.7%, p ≤ 0.01) and liquid biopsies (adenoma: 80.0 ± 1.7%, and CRC: 79.8 ± 1.3% vs. normal: 82.0 ± 2.0%, p ≤ 0.01). However, no significant changes were recognized in inflammatory bowel disease cases. According to in silico analysis of microarray data, altered mRNA levels of several DNA methylation-related enzymes were detected in tumours vs. healthy biopsies, namely one-carbon metabolism-related genes-which met our analysing criteria-showed upregulation, while FOLR2 was downregulated. Using immunohistochemistry, DNMTs, and FOLR2 expression were confirmed. Moreover, significantly diminished folic acid and S-adenosylmethionine levels were observed in parallel with decreasing 5-methylcytosine staining in tumours compared to normal adjacent to tumour tissues (p ≤ 0.05). CONCLUSION: Our results suggest that LINE-1 hypomethylation may have a distinguishing value in precancerous stages compared to healthy samples in liquid biopsies. Furthermore, the reduction of global DNA methylation level could be linked to reduced methyl-donor availability with the contribution of decreased FOLR2 expression.


Subject(s)
Adenoma , Colorectal Neoplasms , Folate Receptor 2 , Inflammatory Bowel Diseases , Adenoma/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , DNA/metabolism , DNA Methylation , Folate Receptor 2/genetics , Folate Receptor 2/metabolism , Folic Acid , Humans , Liquid Biopsy , RNA, Messenger/metabolism , S-Adenosylmethionine/metabolism
6.
Cancers (Basel) ; 14(7)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35406592

ABSTRACT

Folic acid (FA) is a synthetic form of vitamin B9, generally used as a nutritional supplement and an adjunctive medication in cancer therapy. FA is involved in genetic and epigenetic regulation; therefore, it has a dual modulatory role in established neoplasms. We aimed to investigate the effect of short-term (72 h) FA supplementation on colorectal cancer; hence, HT-29 and SW480 cells were exposed to different FA concentrations (0, 100, 10,000 ng/mL). HT-29 cell proliferation and viability levels elevated after 100 ng/mL but decreased for 10,000 ng/mL FA. Additionally, a significant (p ≤ 0.05) improvement of genomic stability was detected in HT-29 cells with micronucleus scoring and comet assay. Conversely, the FA treatment did not alter these parameters in SW480 samples. RRBS results highlighted that DNA methylation changes were bidirectional in both cells, mainly affecting carcinogenesis-related pathways. Based on the microarray analysis, promoter methylation status was in accordance with FA-induced expression alterations of 27 genes. Our study demonstrates that the FA effect was highly dependent on the cell type, which can be attributed to the distinct molecular background and the different expression of proliferation- and DNA-repair-associated genes (YWHAZ, HES1, STAT3, CCL2). Moreover, new aspects of FA-regulated DNA methylation and consecutive gene expression were revealed.

7.
Int J Mol Sci ; 23(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35409133

ABSTRACT

Monitoring the therapeutic response of colorectal cancer (CRC) patients is crucial to determine treatment strategies; therefore, we constructed a liquid biopsy-based approach for tracking tumor dynamics in non-metastatic (nmCRC) and metastatic (mCRC) patients (n = 55). Serial blood collections were performed during chemotherapy for measuring the amount and the global methylation pattern of cell-free DNA (cfDNA), the promoter methylation of SFRP2 and SDC2 genes, and the plasma homocysteine level. The average cfDNA amount was higher (p < 0.05) in nmCRC patients with recurrent cancer (30.4 ± 17.6 ng) and mCRC patients with progressive disease (PD) (44.3 ± 34.5 ng) compared to individuals with remission (13.2 ± 10.0 ng) or stable disease (12.5 ± 3.4 ng). More than 10% elevation of cfDNA from first to last sample collection was detected in all recurrent cases and 92% of PD patients, while a decrease was observed in most patients with remission. Global methylation level changes indicated a decline (75.5 ± 3.4% vs. 68.2 ± 8.4%), while the promoter methylation of SFRP2 and SDC2 and homocysteine level (10.9 ± 3.4 µmol/L vs. 13.7 ± 4.3 µmol/L) presented an increase in PD patients. In contrast, we found exact opposite changes in remission cases. Our study offers a more precise blood-based approach to monitor the treatment response to different chemotherapies than the currently used markers.


Subject(s)
Cell-Free Nucleic Acids , Colorectal Neoplasms , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/surgery , DNA Methylation , Homocysteine , Humans , Liquid Biopsy , Neoplasm Recurrence, Local/genetics
8.
Animals (Basel) ; 11(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34438689

ABSTRACT

Piglets from a porcine circovirus type 2 (PCV2) stable farm of low and high levels of maternally derived antibodies (MDA) against PCV2 were vaccinated either with a whole virus type or a PCV2 ORF2 antigen-based commercial subunit vaccine at three weeks of age. Two non-vaccinated groups served as low and high MDA positive controls. At four weeks post vaccination, all piglets were challenged with a PCV2d-2 type virus strain and were checked for parameters related to vaccine protection over a four-week observation period. MDA levels evidently impacted the outcome of the PCV2d-2 challenge in non-vaccinated animals, while it did not have a significant effect on vaccine-induced protection levels. The humoral immune response developed faster in the whole virus vaccinates than in the subunit vaccinated pigs in the low MDA groups. Further, high MDA levels elicited a stronger negative effect on the vaccine-induced humoral immune response for the subunit vaccine than for the whole virus vaccine. The group-based oral fluid samples and the group mean viraemia and faecal shedding data correlated well, enabling this simple, and animal welfare-friendly sampling method for the evaluation of the PCV2 viral load status of these nursery piglets.

9.
Cells ; 9(8)2020 08 09.
Article in English | MEDLINE | ID: mdl-32784836

ABSTRACT

Global DNA hypomethylation is a characteristic feature of colorectal carcinoma (CRC). The tumor inhibitory effect of S-adenosylmethionine (SAM) methyl donor has been described in certain cancers including CRC. However, the molecular impact of SAM treatment on CRC cell lines with distinct genetic features has not been evaluated comprehensively. HT-29 and SW480 cells were treated with 0.5 and 1 mmol/L SAM for 48 h followed by cell proliferation measurements, whole-genome transcriptome and methylome analyses, DNA stability assessments and exome sequencing. SAM reduced cell number and increased senescence by causing S phase arrest, besides, multiple EMT-related genes (e.g., TGFB1) were downregulated in both cell lines. Alteration in the global DNA methylation level was not observed, but certain methylation changes in gene promoters were detected. SAM-induced γ-H2AX elevation could be associated with activated DNA repair pathway showing upregulated gene expression (e.g., HUS1). Remarkable genomic stability elevation, namely, decreased micronucleus number and comet tail length was observed only in SW480 after treatment. SAM has the potential to induce senescence, DNA repair, genome stability and to reduce CRC progression. However, the different therapeutic responses of HT-29 and SW480 to SAM emphasize the importance of the molecular characterization of CRC cases prior to methyl donor supplementation.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma/drug therapy , Colorectal Neoplasms/drug therapy , DNA Methylation/drug effects , DNA Repair/drug effects , S-Adenosylmethionine/pharmacology , Antineoplastic Agents/administration & dosage , Gene Expression Regulation, Neoplastic/drug effects , HT29 Cells , Humans , S-Adenosylmethionine/administration & dosage
10.
Orv Hetil ; 161(14): 532-543, 2020 Apr.
Article in Hungarian | MEDLINE | ID: mdl-32223415

ABSTRACT

Colorectal cancer (CRC) is one of the most common types of cancers worldwide. The incidence of sporadic CRC is lower in individuals below 50 years and increases with age, furthermore, it shows typical clinical, macroscopic and molecular differences between females and males. According to the results of epidemiological and molecular biology studies, the estradiol-regulating signaling pathway plays an important role in the development and prognosis of CRC, predominantly through estrogen receptor beta (ERß), which is dominant in the colonic epithelium. Estradiol has multiple gastrointestinal effects, which were confirmed by in vitro and in vivo studies on histologically intact and cancerous cells as well. In contrast to estrogen receptor alpha (ERα), the activation of ERß inhibits cell proliferation and enhances apoptosis, nevertheless, the expression of estrogen receptor beta can change both during physiological ageing and in colorectal disorders. The ERß-mediated antitumour effects of estradiol may be exerted through inhibition of cell proliferation, stimulation of apoptosis, inhibition of metastasis formation and its anti-inflammatory activity. Based on the results of cell culture and animal studies, selective modulators of estrogen receptor beta (selective estrogen receptor modulator [SERM]) and phytoestrogens can be new, additional therapeutic options in the treatment of colorectal diseases characterized by chronic inflammation and uncontrolled cell proliferation. Orv Hetil. 2020; 161(14): 532-543.


Subject(s)
Colorectal Neoplasms/metabolism , Estrogens/metabolism , Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Female , Humans , Male , Middle Aged
11.
World J Gastroenterol ; 25(34): 5026-5048, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31558855

ABSTRACT

Long non-coding RNAs (lncRNAs) are members of the non-protein coding RNA family longer than 200 nucleotides. They participate in the regulation of gene and protein expression influencing apoptosis, cell proliferation and immune responses, thereby playing a critical role in the development and progression of various cancers, including colorectal cancer (CRC). As CRC is one of the most frequently diagnosed malignancies worldwide with high mortality, its screening and early detection are crucial, so the identification of disease-specific biomarkers is necessary. LncRNAs are promising candidates as they are involved in carcinogenesis, and certain lncRNAs (e.g., CCAT1, CRNDE, CRCAL1-4) show altered expression in adenomas, making them potential early diagnostic markers. In addition to being useful as tissue-specific markers, analysis of circulating lncRNAs (e.g., CCAT1, CCAT2, BLACAT1, CRNDE, NEAT1, UCA1) in peripheral blood offers the possibility to establish minimally invasive, liquid biopsy-based diagnostic tests. This review article aims to describe the origin, structure, and functions of lncRNAs and to discuss their contribution to CRC development. Moreover, our purpose is to summarise lncRNAs showing altered expression levels during tumor formation in both colon tissue and plasma/serum samples and to demonstrate their clinical implications as diagnostic or prognostic biomarkers for CRC.


Subject(s)
Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Cell-Free Nucleic Acids/blood , Colorectal Neoplasms/diagnosis , RNA, Long Noncoding/metabolism , Biomarkers, Tumor/isolation & purification , Biopsy , Carcinogenesis/genetics , Cell-Free Nucleic Acids/isolation & purification , Colon/pathology , Colorectal Neoplasms/blood , Colorectal Neoplasms/mortality , Disease Progression , Disease-Free Survival , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Staging , Prognosis , RNA, Long Noncoding/blood , RNA, Long Noncoding/isolation & purification , Rectum/pathology
12.
Orv Hetil ; 160(30): 1167-1177, 2019 Jul.
Article in Hungarian | MEDLINE | ID: mdl-31327245

ABSTRACT

The incidence and mortality of colorectal cancer (CRC) are considerably high in Central European countries, it is the second most common cancer in both men and women in Hungary with 10,000 newly registered patients per year. These data indicate the necessity of new screening methods that are more comfortable for patients, hence the compliance can be increased. Cell-free DNA (cfDNA) level in blood is elevated in certain physiological conditions, such as pregnancy or high physical activity. Furthermore, cfDNA concentration alterations can also be detected in some pathological processes; increased cfDNA amount was observed in autoimmune and inflammatory diseases, as well as in various cancers including CRC. Numerous studies about origin, function, and mechanism of cfDNA can be found in the scientific literature. In this review, we aimed to describe the quantitative and qualitative changes of cfDNA, to present its functions, and to provide an overview of the available diagnostic applications for CRC. CfDNA can be released to the circulatory system via apoptosis, necrosis or by direct secretions by living cells. In cancer patients, cfDNA can originate from healthy and cancer cells, hence genetic (e.g. mutations in APC, KRAS, BRAF) and epigenetic (e.g. methylation in SEPT9, SFRP1) alterations of tumor cells can be examined in cfDNA fraction. Several high-throughput, sensitive and even automated methods are available providing opportunity to perform standardized sample preparation and to analyse biomarker candidates quantitatively. These enhancements can help to develop alternative screening methods that can be easily integrated into the clinical practice and can contribute to early cancer detection. Orv Hetil. 2019; 160(30): 1167-1177.


Subject(s)
Biomarkers, Tumor/blood , Cell-Free Nucleic Acids/genetics , Colorectal Neoplasms/diagnosis , DNA, Neoplasm/genetics , Biomarkers, Tumor/genetics , Colorectal Neoplasms/blood , DNA Methylation , DNA, Neoplasm/blood , Female , Humans , Hungary , Male
13.
Orv Hetil ; 160(28): 1087-1096, 2019 Jul.
Article in Hungarian | MEDLINE | ID: mdl-31280597

ABSTRACT

Vitamin B9, also known as folate, can be found in natural and synthetic forms, mostly in vegetables or folic acid containing food supplements. By participating in the proper cell development and division, its presence is indispensable for certain basic metabolic processes. The decreased folate level of the body, mainly caused by environmental and hereditary factors as well as aging, can lead to genetic, epigenetic and metabolic changes. It can be related to the development of megaloblastic anemia, various cardiovascular diseases (such as atherosclerosis, stroke) obstetrical complications (such as abruption of the placentae, spontaneous abortion, preterm delivery, neural tube defect), neuropsychiatric diseases (such as Alzheimer's disease, Parkinson's disease, depression) and tumors. The vitamin has a preventive effect in all the above-mentioned diseases, however, in the case of tumor existence, its therapeutic use requires great care, as it may promote the progression of certain precancerous lesions. Food fortification with folic acid is currently being carried out in more than 60 countries in order to ensure a minimum vitamin B9 requirement for the population and therefore to prevent the development of the diseases that are connected to folic acid deficiency. Due to its assumable role in carcinogenesis, an initial concern had taken place when fortification was implemented (1998), however, the present statistical data do not confirm such adverse health effects. On the other hand, several beneficial properties can be connected to the vitamin, that can be the reason why more and more countries are considering to join this program. Besides the fact that folic acid is a widely used food supplement, it is also applied in oncological medicine (leucovorin) to increase the effectiveness of certain chemotherapeutical drugs (e.g. methotrexate, 5-fluorouracil). Orv Hetil. 2019; 160(28): 1087-1096.


Subject(s)
Folic Acid Deficiency , Neural Tube Defects , Vitamin B Complex , Vitamin B Deficiency , Dietary Supplements , Female , Folic Acid , Humans , Infant, Newborn , Pregnancy , Vitamin B 12
14.
BMC Cancer ; 18(1): 695, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29945573

ABSTRACT

BACKGROUND: DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes. METHODS: Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA metlyation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed. RESULTS: According to the LINE-1 methylation results, overall hypomethylation was observed along the normal-adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated. In CRC-N comparison DKK2, SDC2, SOX1 genes showed hypermethylation, while ERBB4, CREB5, CNTN1 genes were hypomethylated. In certain mutation hot spot regions significant DNA methylation alterations were detected. The TP53 gene body was addressed by hypermethylation in adenomas. APC, TP53 and KRAS mutations were found in 30, 15, 21% of adenomas, and in 29, 53, 29% of CRCs, respectively. mRNA expression changes were observed in several TP53 pathway genes showing promoter methylation alterations. CONCLUSIONS: DNA methylation with consecutive phenotypic effect can be observed in a high number of promoter and gene body regions through CRC development.


Subject(s)
Colorectal Neoplasms/genetics , DNA Methylation , Exons , Mutation , Promoter Regions, Genetic , Adenoma/genetics , CpG Islands , Humans , Long Interspersed Nucleotide Elements , Signal Transduction , Tumor Suppressor Protein p53/physiology
15.
Orv Hetil ; 159(1): 3-15, 2018 Jan.
Article in Hungarian | MEDLINE | ID: mdl-29291647

ABSTRACT

Besides the genetic research, increasing number of scientific studies focus on epigenetic phenomena - such as DNA methylation - regulating the expression of genes behind the phenotype, thus can be related to the pathomechanism of several diseases. In this review, we aim to summarize the current knowledge about the evolutionary appearance and functional diversity of DNA methylation as one of the epigenetic mechanisms and to demonstrate its role in aging and cancerous diseases. DNA methylation is also characteristic/also appear to prokaryotes, eukaryotes and viruses. In prokaryotes and viruses, it provides defence mechanisms against extragenous DNA. DNA methylation in prokaryotes plays a significant role in the regulation of transcription, the initiation of replication and in Dam-directed mismatch repair. In viruses, it participates not only in defence mechanisms, but in the assembly of capsids as well which is necessary for spreading. In eukaryotes, DNA methylation is involved in recombination, replication, X chromosome inactivation, transposon control, regulation of chromatin structure and transcription, and it also contributes to the imprinting phenomenon. Besides the above-mentioned aspects, DNA methylation also has an evolutionary role as it can change DNA mutation rate. Global hypomethylation appearing during aging and in cancerous diseases can lead to genetic instablility and spontaneous mutations through its role in the regulation of transposable elements. Local hypermethylated alterations such as hypermethylation of SFRP1, SFRP2, DKK1 and APC gene promoters can cause protein expression changes, thus contribute to development of cancer phenotype. DNA methylation alterations during aging in cancerous diseases support the importance of epigenetic research focusing on disease diagnostics and prognostics. Orv Hetil. 2018; 159(1): 3-15.


Subject(s)
Aging/metabolism , Biomarkers, Tumor/metabolism , Epigenesis, Genetic/genetics , Neoplasms/genetics , Aged , Aged, 80 and over , DNA Methylation , Humans , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...