Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37904943

ABSTRACT

Background: Phenotypes identified during dysmorphology physical examinations are critical to genetic diagnosis and nearly universally documented as free-text in the electronic health record (EHR). Variation in how phenotypes are recorded in free-text makes large-scale computational analysis extremely challenging. Existing natural language processing (NLP) approaches to address phenotype extraction are trained largely on the biomedical literature or on case vignettes rather than actual EHR data. Methods: We implemented a tailored system at the Children's Hospital of Philadelpia that allows clinicians to document dysmorphology physical exam findings. From the underlying data, we manually annotated a corpus of 3136 organ system observations using the Human Phenotype Ontology (HPO). We provide this corpus publicly. We trained a transformer based NLP system to identify HPO terms from exam observations. The pipeline includes an extractor, which identifies tokens in the sentence expected to contain an HPO term, and a normalizer, which uses those tokens together with the original observation to determine the specific term mentioned. Findings: We find that our labeler and normalizer NLP pipeline, which we call PhenoID, achieves state-of-the-art performance for the dysmorphology physical exam phenotype extraction task. PhenoID's performance on the test set was 0.717, compared to the nearest baseline system (Pheno-Tagger) performance of 0.633. An analysis of our system's normalization errors shows possible imperfections in the HPO terminology itself but also reveals a lack of semantic understanding by our transformer models. Interpretation: Transformers-based NLP models are a promising approach to genetic phenotype extraction and, with recent development of larger pre-trained causal language models, may improve semantic understanding in the future. We believe our results also have direct applicability to more general extraction of medical signs and symptoms. Funding: US National Institutes of Health.

2.
PLoS Biol ; 21(2): e3001989, 2023 02.
Article in English | MEDLINE | ID: mdl-36745682

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the cell-surface receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). While its central role in Coronavirus Disease 2019 (COVID-19) pathogenesis is indisputable, there remains significant debate regarding the role of this transmembrane carboxypeptidase in the disease course. These include the role of soluble versus membrane-bound ACE2, as well as ACE2-independent mechanisms that may contribute to viral spread. Testing these roles requires in vivo models. Here, we report humanized ACE2-floxed mice in which hACE2 is expressed from the mouse Ace2 locus in a manner that confers lethal disease and permits cell-specific, Cre-mediated loss of function, and LSL-hACE2 mice in which hACE2 is expressed from the Rosa26 locus enabling cell-specific, Cre-mediated gain of function. Following exposure to SARS-CoV-2, hACE2-floxed mice experienced lethal cachexia, pulmonary infiltrates, intravascular thrombosis and hypoxemia-hallmarks of severe COVID-19. Cre-mediated loss and gain of hACE2 demonstrate that neuronal infection confers lethal cachexia, hypoxemia, and respiratory failure in the absence of lung epithelial infection. In this series of genetic experiments, we demonstrate that ACE2 is absolutely and cell-autonomously required for SARS-CoV-2 infection in the olfactory epithelium, brain, and lung across diverse cell types. Therapies inhibiting or blocking ACE2 at these different sites are likely to be an effective strategy towards preventing severe COVID-19.


Subject(s)
COVID-19 , Mice , Animals , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/metabolism , Cachexia , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Hypoxia
3.
Pediatrics ; 150(1)2022 07 01.
Article in English | MEDLINE | ID: mdl-35642503

ABSTRACT

BACKGROUND AND OBJECTIVES: Telemedicine may increase access to medical genetics care. However, in the pediatric setting, how telemedicine may affect the diagnostic rate is unknown, partially because of the perceived importance of the dysmorphology physical examination. We studied the clinical effectiveness of telemedicine for patients with suspected or confirmed genetic conditions. METHODS: We conducted a retrospective cohort study of outpatient encounters before and after the widespread implementation of telemedicine (N = 5854). Visit types, diagnoses, patient demographic characteristics, and laboratory data were acquired from the electronic health record. Patient satisfaction was assessed through survey responses. New molecular diagnosis was the primary end point. RESULTS: Patients seen by telemedicine were more likely to report non-Hispanic White ancestry, prefer to speak English, live in zip codes with higher median incomes, and have commercial insurance (all P < .01). Genetic testing was recommended for more patients evaluated by telemedicine than in person (79.5% vs 70.9%; P < .001). Patients seen in person were more likely to have a sample collected, resulting in similar test completion rates (telemedicine, 51.2%; in person, 55.1%; P = .09). There was no significant difference in molecular diagnosis rate between visit modalities (telemedicine, 13.8%; in person, 12.4%; P = .40). CONCLUSIONS: Telemedicine and traditional in-person evaluation resulted in similar molecular diagnosis rates. However, improved methodologies for remote sample collection may be required. This study reveals the feasibility of telemedicine in a large academic medical genetics practice and is applicable to other pediatric specialties with perceived importance of physical examination.


Subject(s)
Telemedicine , Child , Humans , Patient Satisfaction , Retrospective Studies , Surveys and Questionnaires , Telemedicine/methods , Treatment Outcome
4.
bioRxiv ; 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34909769

ABSTRACT

Lethal COVID-19 is associated with respiratory failure that is thought to be caused by acute respiratory distress syndrome (ARDS) secondary to pulmonary infection. To date, the cellular pathogenesis has been inferred from studies describing the expression of ACE2, a transmembrane protein required for SARS-CoV-2 infection, and detection of viral RNA or protein in infected humans, model animals, and cultured cells. To functionally test the cellular mechanisms of COVID-19, we generated hACE2 fl animals in which human ACE2 (hACE2) is expressed from the mouse Ace2 locus in a manner that permits cell-specific, Cre-mediated loss of function. hACE2 fl animals developed lethal weight loss and hypoxemia within 7 days of exposure to SARS-CoV-2 that was associated with pulmonary infiltrates, intravascular thrombosis and patchy viral infection of lung epithelial cells. Deletion of hACE2 in lung epithelial cells prevented viral infection of the lung, but not weight loss, hypoxemia or death. Inhalation of SARS-CoV-2 by hACE2 fl animals resulted in early infection of sustentacular cells with subsequent infection of neurons in the neighboring olfactory bulb and cerebral cortexâ€" events that did not require lung epithelial cell infection. Pharmacologic ablation of the olfactory epithelium or Foxg1 Cre mediated deletion of hACE2 in olfactory epithelial cells and neurons prevented lethality and neuronal infection following SARS-CoV-2 infection. Conversely, transgenic expression of hACE2 specifically in olfactory epithelial cells and neurons in Foxg1 Cre ; LSL- hACE2 mice was sufficient to confer neuronal infection associated with respiratory failure and death. These studies establish mouse loss and gain of function genetic models with which to genetically dissect viral-host interactions and demonstrate that lethal disease due to respiratory failure may arise from extrapulmonary infection of the olfactory epithelium and brain. Future therapeutic efforts focused on preventing olfactory epithelial infection may be an effective means of protecting against severe COVID-19.

5.
Mol Cancer Ther ; 19(11): 2319-2329, 2020 11.
Article in English | MEDLINE | ID: mdl-32879052

ABSTRACT

Menin serves both tumor suppressor and promoter roles in a highly tumor-specific manner. In colorectal cancer, menin is overexpressed and plays a critical role in regulating transcription of SKP2, and combined treatment with a menin inhibitor and small-molecule EGFR inhibitor (EGFRi) leads to synergistic killing of colorectal cancer cells. However, the full spectrum of menin function in colorectal cancer remains uncertain. Herein, we demonstrate that menin inhibition increases glycolysis in colorectal cancer cells. This menin inhibitor-induced increase in glycolysis occurs in an mTOR-independent manner and enhances the sensitivity of colorectal cancer cells to EGFRis. In addition, we show that EGFRis induce autophagy in colorectal cancer cells, which is important for cell survival in the setting of combined treatment with an EGFRi and menin inhibitor. Inhibition of autophagy with chloroquine further sensitizes colorectal cancers to treatment with the combination of an EGFRi and menin inhibitor. Together, these findings uncover a novel role for menin in colorectal cancer as a repressor of glycolysis and demonstrate that menin inhibitor-induced increases in glycolysis sensitize colorectal cancer cells to EGFRis. In addition, these findings illustrate the importance of autophagy as a protective mechanism against EGFRis, especially in the presence of menin inhibition. Ultimately, these data open the possibility of using menin-mediated regulation of glycolysis to potentially improve treatment modalities for colorectal cancer.


Subject(s)
Autophagy , Colonic Neoplasms/etiology , Colonic Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/metabolism , Animals , Autophagy/drug effects , Autophagy/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Glycolysis/drug effects , Humans , Mice , Models, Biological , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , TOR Serine-Threonine Kinases/metabolism
6.
Genes Dev ; 34(13-14): 973-988, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32467224

ABSTRACT

Chromatin modifiers play critical roles in epidermal development, but the functions of histone deacetylases in this context are poorly understood. The class I HDAC, HDAC3, is of particular interest because it plays divergent roles in different tissues by partnering with tissue-specific transcription factors. We found that HDAC3 is expressed broadly in embryonic epidermis and is required for its orderly stepwise stratification. HDAC3 protein stability in vivo relies on NCoR and SMRT, which function redundantly in epidermal development. However, point mutations in the NCoR and SMRT deacetylase-activating domains, which are required for HDAC3's enzymatic function, permit normal stratification, indicating that HDAC3's roles in this context are largely independent of its histone deacetylase activity. HDAC3-bound sites are significantly enriched for predicted binding motifs for critical epidermal transcription factors including AP1, GRHL, and KLF family members. Our results suggest that among these, HDAC3 operates in conjunction with KLF4 to repress inappropriate expression of Tgm1, Krt16, and Aqp3 In parallel, HDAC3 suppresses expression of inflammatory cytokines through a Rela-dependent mechanism. These data identify HDAC3 as a hub coordinating multiple aspects of epidermal barrier acquisition.


Subject(s)
Cell Differentiation/genetics , Epidermal Cells/cytology , Epidermis/embryology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Animals , Embryo, Mammalian , Gene Deletion , Gene Expression Regulation, Developmental , Genes, Lethal/genetics , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Inbred C57BL , Mutation , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 2/genetics , Nuclear Receptor Co-Repressor 2/metabolism , Protein Interaction Domains and Motifs/genetics , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
7.
J Endocrinol ; 244(1): 41-52, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31539871

ABSTRACT

Protein arginine methyltransferase 5 (PRMT5), a symmetric arginine methyltransferase, regulates cell functions by influencing gene transcription through posttranslational modification of histones and non-histone proteins. PRMT5 interacts with multiple partners including menin, which controls beta cell homeostasis. However, the role of Prmt5 in pancreatic islets, particularly in beta cells, remains unclear. A mouse model with an islet-specific knockout (KO) of the Prmt5 gene was generated, and the influence of the Prmt5 excision on beta cells was investigated via morphologic and functional studies. Beta cell function was evaluated by glucose tolerance test (GTT) and glucose-stimulated insulin secretion (GSIS) test. Beta cell proliferation was evaluated by immunostaining. Gene expression change was determined by real-time qPCR. Molecular mechanisms were investigated in beta cells in vitro and in vivo in Prmt5 KO mice. The results show that islet-specific KO of Prmt5 reduced expression of the insulin gene and impaired glucose tolerance and GSIS in vivo. The mechanistic study indicated that PRMT5 is involved in the regulation of insulin gene transcription, likely via histone methylation-related chromatin remodeling. The reduced expression of insulin in beta cells in the Prmt5 KO mice may contribute to impaired glucose tolerance (IGT) and deficient GSIS in the mouse model. These results will provide new insights into exploring novel strategies to treat diabetes caused by insulin insufficiency.


Subject(s)
Glucose Intolerance/genetics , Insulin Secretion/genetics , Islets of Langerhans/metabolism , Protein-Arginine N-Methyltransferases/deficiency , Animals , Cell Proliferation/genetics , Glucose Tolerance Test , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Mice , Mice, Knockout
8.
Cancer Res ; 79(9): 2195-2207, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30877106

ABSTRACT

Menin is a nuclear epigenetic regulator that can both promote and suppress tumor growth in a highly tissue-specific manner. The role of menin in colorectal cancer, however, remains unclear. Here, we demonstrate that menin was overexpressed in colorectal cancer and that inhibition of menin synergized with small-molecule inhibitors of EGFR (iEGFR) to suppress colorectal cancer cells and tumor xenografts in vivo in an EGFR-independent manner. Mechanistically, menin bound the promoter of SKP2, a pro-oncogenic gene crucial for colorectal cancer growth, and promoted its expression. Moreover, the iEGFR gefitinib activated endoplasmic reticulum calcium channel inositol trisphosphate receptor 3 (IP3R3)-mediated release of calcium, which directly bound menin. Combined inhibition of menin and iEGFR-induced calcium release synergistically suppressed menin-mediated expression of SKP2 and growth of colorectal cancer. Together, these findings uncover a molecular convergence of menin and the iEGFR-induced, IP3R3-mediated calcium release on SKP2 transcription and reveal opportunities to enhance iEGFR efficacy to improve treatments for colorectal cancer. SIGNIFICANCE: Menin acts as a calcium-responsive regulator of SKP2 expression, and small molecule EGFR inhibitors, which induce calcium release, synergize with Menin inhibition to reduce SKP2 expression and suppress colorectal cancer.


Subject(s)
Calcium/metabolism , Colorectal Neoplasms/drug therapy , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins/antagonists & inhibitors , S-Phase Kinase-Associated Proteins/antagonists & inhibitors , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Drug Therapy, Combination , Enzyme Inhibitors/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gefitinib/pharmacology , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Thapsigargin/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Cancer Discov ; 6(1): 96-107, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26554404

ABSTRACT

UNLABELLED: Neuroblastomas harboring activating point mutations in anaplastic lymphoma kinase (ALK) are differentially sensitive to the ALK inhibitor crizotinib, with certain mutations conferring intrinsic crizotinib resistance. To overcome this clinical obstacle, our goal was to identify inhibitors with improved potency that can target intractable ALK variants such as F1174L. We find that PF-06463922 has high potency across ALK variants and inhibits ALK more effectively than crizotinib in vitro. Most importantly, PF-06463922 induces complete tumor regression in both crizotinib-resistant and crizotinib-sensitive xenograft mouse models of neuroblastoma, as well as in patient-derived xenografts harboring the crizotinib-resistant F1174L or F1245C mutations. These studies demonstrate that PF-06463922 has the potential to overcome crizotinib resistance and exerts unprecedented activity as a single targeted agent against F1174L and F1245C ALK-mutated xenograft tumors, while also inducing responses in an R1275Q xenograft model. Taken together, these results provide the rationale to move PF-06463922 into clinical trials for treatment of patients with ALK-mutated neuroblastoma. SIGNIFICANCE: The next-generation ALK/ROS1 inhibitor PF-06463922 exerts unparalleled activity in ALK-driven neuroblastoma models with primary crizotinib resistance. Our biochemical and in vivo data provide the preclinical rationale for fast-tracking the development of this agent in children with relapsed/refractory ALK-mutant neuroblastoma.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Lactams, Macrocyclic/administration & dosage , Neuroblastoma/drug therapy , Protein Kinase Inhibitors/administration & dosage , Receptor Protein-Tyrosine Kinases/genetics , Aminopyridines , Anaplastic Lymphoma Kinase , Animals , Cell Line, Tumor , Crizotinib , Humans , Lactams , Lactams, Macrocyclic/pharmacology , Mice , Mutation , Neuroblastoma/genetics , Neuroblastoma/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Pyridines/administration & dosage , Pyridines/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...