Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 14(15): 3793-808, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27005327

ABSTRACT

Several 2,2':6',2''-terpyridines substituted in the 4'-position were synthesized and their photophysical properties were investigated by absorption and photoluminescence spectroscopy in dilute solutions and solid state. The studies confirmed that the absorption and emission wavelengths, fluorescence quantum yields and lifetimes of 1-R(1-16) are strongly structure-related, demonstrating a decisive role of the nature of the substituent in determining the photophysical properties of 4'-functionalized terpyridines. Additionally, the density functional theory (DFT) calculations were performed for 1-R(1-16) to get insight into their electronic structure and spectroscopic properties.

2.
Dalton Trans ; 45(4): 1746-62, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26700370

ABSTRACT

Six new Re(i) complexes of the general formula [ReCl(CO)3(4'-R-terpy-κ(2)N)] with 2,2':6',2''-terpyridine-based ligands have been synthesized and characterized by IR, NMR ((1)H and (13)C), UV-Vis spectroscopy and single crystal X-ray analysis. The luminescent properties of [ReCl(CO)3(4'-R-terpy-κ(2)N)] were studied in solution and solid state, at 298 and 77 K, respectively. To obtain detailed insight into the electronic structures and spectroscopic properties of [ReCl(CO)3(4'-R-terpy-κ(2)N)], the density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed. Also, the suitability of this class of materials for being applied in organic light emitting diodes (OLEDs) has been preliminarily tested.

3.
Molecules ; 20(3): 4565-93, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25774490

ABSTRACT

New catalytically or high pressure activated reactions and routes, including coupling, double bond migration in allylic systems, and various types of cycloaddition and dihydroamination have been used for the synthesis of novel bithiophene derivatives. Thanks to the abovementioned reactions and routes combined with non-catalytic ones, new acetylene, butadiyne, isoxazole, 1,2,3-triazole, pyrrole, benzene, and fluoranthene derivatives with one, two or six bithiophenyl moieties have been obtained. Basic sources of crucial substrates which include bithiophene motif for catalytic reactions were 2,2'-bithiophene, gaseous acetylene and 1,3-butadiyne.


Subject(s)
Cycloaddition Reaction/methods , Thiophenes/chemical synthesis , Amination , Catalysis , Molecular Structure , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...