Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Ecology ; 103(10): e3773, 2022 10.
Article in English | MEDLINE | ID: mdl-35633474

ABSTRACT

Acute resource pulses can have dramatic legacies for organismal growth, but the legacy effects of resource pulses on broader aspects of community structure and ecosystem processes are less understood. Mass emergence of periodical cicadas (Magicicada spp.) provides an excellent opportunity to shed light on the influence of resource pulses on community and ecosystem dynamics: the adults emerge every 13 or 17 years in vast numbers over much of eastern North America, with a smaller but still significant number becoming incorporated into forest food webs. To study the potential effects of such arthropod resource pulse on primary production and belowground food webs, we added adult cicada bodies to the soil surface surrounding sycamore trees and assessed soil carbon and nitrogen concentrations, plant-available nutrients, abundance and community composition of soil fauna occupying various trophic levels, decomposition rate of plant litter after 50 and 100 days, and tree performance for 4 years. Contrary to previous studies, we did not find significant cicada effects on tree performance despite observing higher plant-available nutrient levels on cicada addition plots. Cicada addition did change the community composition of soil nematodes and increased the abundance of bacterial- and fungal-feeding nematodes, while plant feeders, omnivores, and predators were not influenced. Altogether, acute resource pulses from decomposing cicadas propagated belowground to soil microbial-feeding invertebrates and stimulated nutrient mineralization in the soil, but these effects did not transfer up to affect tree performance. We conclude that, despite their influence on soil food web and processes they carry out, even massive resource pulses from arthropods do not necessarily translate to NPP, supporting the view that ephemeral nutrient pulses can be attenuated relatively quickly despite being relatively large in magnitude.


Subject(s)
Arthropods , Hemiptera , Animals , Carbon , Ecosystem , Food Chain , Nitrogen , Plants , Soil , Trees
2.
Sci Total Environ ; 797: 149182, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34311374

ABSTRACT

Macrodecomposers provide important ecosystem services even in human dominated habitats including urban ecosystems, but the effect of urban land conversion on their species diversity and abundance has not been explored at global scale. Here, we present the first meta-analysis to quantify the general response of two major arthropod taxa, terrestrial isopods and millipedes to urbanization and to reveal the underlying mechanisms. Climatic (temperature, precipitation, growing season length), edaphic (pH, organic carbon, CaCO3 and clay content of surface soils), urban (population density, city age, vegetation cover and mean actual evapotranspiration) parameters and methods of study (duration, sampling technique, replications) were used as moderators. We used a hierarchical meta-analytic approach to consider the dependence of multiple effect sizes obtained from one study. Altogether 156 paired observations were extracted from 59 urban studies conducted between 1980 and 2020. Urbanization had a negative effect on species diversity (species richness and Shannon index) of both macroarthropod taxa. However, both the direction and strength of their abundance response varied to a greater extent, resulting in a neutral effect of urban disturbance on them. The key drivers influencing the urban effects on macroarthropods were mean annual temperature and precipitation, absolute minimum temperature and length of growing season. The study also highlighted the importance of sampling methods: direct sampling (hand collecting) resulted in stronger urban effects presumably due to several sources of sampling bias. Our global synthesis highlighted that urbanization is a threat to soil arthropods, particularly to litter-dwelling detritivores, which potentially alters plant residue processing and ultimately soil biogeochemical cycles.


Subject(s)
Arthropods , Ecosystem , Animals , Cities , Humans , Soil , Urbanization
3.
Glob Chang Biol ; 27(17): 4139-4153, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34021965

ABSTRACT

An increasingly urbanized world is one of the most prominent examples of global environmental change. Across the globe, urban parks are designed and managed in a similar way, resulting in visually pleasing expansions of lawn interspersed with individually planted trees of varying appearances and functional traits. These large urban greenspaces have the capacity to provide various ecosystem services, including those associated with soil physicochemical properties. Our aim was to explore whether soil properties in urban parks diverge underneath vegetation producing labile or recalcitrant litter, and whether the impact is affected by climatic zone (from a boreal to temperate to tropical city). We also compared these properties to those in (semi)natural forests outside the cities to assess the influence of urbanization on plant-trait effects. We showed that vegetation type affected percentage soil organic matter (OM), total carbon (C) and total nitrogen (N), but inconsistently across climatic zones. Plant-trait effects were particularly weak in old parks in the boreal and temperate zones, whereas in young parks in these zones, soils underneath the two tree types accumulated significantly more OM, C and N compared to lawns. Within climatic zones, anthropogenic drivers dominated natural ones, with consistently lower values of organic-matter-related soil properties under trees producing labile or recalcitrant litter in parks compared to forests. The dominating effect of urbanization is also reflected in its ability to homogenize soil properties in parks across the three cities, especially in lawn soils and soils under trees irrespective of functional trait. Our study demonstrates that soil functions that relate to carbon and nitrogen dynamics-even in old urban greenspaces where plant-soil interactions have a long history-clearly diverged from those in natural ecosystems, implying a long-lasting influence of anthropogenic drivers on soil ecosystem services.


Subject(s)
Ecosystem , Soil , Forests , Trees , Urbanization
4.
Bioscience ; 70(4): 297-314, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32284630

ABSTRACT

The Earth's population will become more than 80% urban during this century. This threshold is often regarded as sufficient justification for pursuing urban ecology. However, pursuit has primarily focused on building empirical richness, and urban ecology theory is rarely discussed. The Baltimore Ecosystem Study (BES) has been grounded in theory since its inception and its two decades of data collection have stimulated progress toward comprehensive urban theory. Emerging urban ecology theory integrates biology, physical sciences, social sciences, and urban design, probes interdisciplinary frontiers while being founded on textbook disciplinary theories, and accommodates surprising empirical results. Theoretical growth in urban ecology has relied on refined frameworks, increased disciplinary scope, and longevity of interdisciplinary interactions. We describe the theories used by BES initially, and trace ongoing theoretical development that increasingly reflects the hybrid biological-physical-social nature of the Baltimore ecosystem. The specific mix of theories used in Baltimore likely will require modification when applied to other urban areas, but the developmental process, and the key results, will continue to benefit other urban social-ecological research projects.

5.
J Hazard Mater ; 388: 122027, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31954300

ABSTRACT

The mechanisms underlying the bioaccumulation and detoxification of tetrabromobisphenol A (TBBPA) by terrestrial invertebrates are poorly understood. We used uniformly ring-14C-labelled TBBPA to investigate the bioaccumulation kinetics, metabolites distribution, and subsequent detoxification strategy of TBBPA in the geophagous earthworm Metaphire guillelmi in soil. The modeling of bioaccumulation kinetics showed a higher biota-soil-accumulation-factor of total 14C than that of the parent compound TBBPA, indicating that most of the ingested TBBPA was transformed into metabolites or sequestered as bound residues in the earthworms. Bound-residue formation in the digestive tract may hinder the accumulation of TBBPA in other parts of the body. Nonetheless, via the circulatory system, TBBPA was transferred to other tissues, especially the clitellum region, where sensitive organs are located. In the clitellum region, TBBPA was quickly transformed to less toxic dimethyl TBBPA ether and rapidly depurated through feces. We conclude that the detoxification of TBBPA in M. guillelmi occurred via bound-residue formation in the digestive tract as well as the generation and depuration of O-methylation metabolites. Our results provided direct evidence of TBBPA detoxification in earthworms. Further researches are needed to confirm whether O-methylation coupled with depuration is a common detoxification strategy for phenolic xenobiotics in other soil organisms needs to be determined.


Subject(s)
Oligochaeta/metabolism , Polybrominated Biphenyls/metabolism , Soil Pollutants/metabolism , Animals , Bioaccumulation , Biotransformation , Gastrointestinal Tract/metabolism , Inactivation, Metabolic , Kinetics
6.
Front Microbiol ; 10: 2330, 2019.
Article in English | MEDLINE | ID: mdl-31649656

ABSTRACT

Urbanization results in the systemic conversion of land-use, driving habitat and biodiversity loss. The "urban convergence hypothesis" posits that urbanization represents a merging of habitat characteristics, in turn driving physiological and functional responses within the biotic community. To test this hypothesis, we sampled five cities (Baltimore, MD, United States; Helsinki and Lahti, Finland; Budapest, Hungary; Potchefstroom, South Africa) across four different biomes. Within each city, we sampled four land-use categories that represented a gradient of increasing disturbance and management (from least intervention to highest disturbance: reference, remnant, turf/lawn, and ruderal). Previously, we used amplicon sequencing that targeted bacteria/archaea (16S rRNA) and fungi (ITS) and reported convergence in the archaeal community. Here, we applied shotgun metagenomic sequencing and QPCR of functional genes to the same soil DNA extracts to test convergence in microbial function. Our results suggest that urban land-use drives changes in gene abundance related to both the soil N and C metabolism. Our updated analysis found taxonomic convergence in both the archaeal and bacterial community (16S amplicon data). Convergence of the archaea was driven by increased abundance of ammonia oxidizing archaea and genes for ammonia oxidation (QPCR and shotgun metagenomics). The proliferation of ammonia-oxidizers under turf and ruderal land-use likely also contributes to the previously documented convergence of soil mineral N pools. We also found a higher relative abundance of methanogens (amplicon sequencing), a higher relative abundance of gene sequences putatively identified as Ni-Fe hydrogenase and nickel uptake (shotgun metagenomics) under urban land-use; and a convergence of gene sequences putatively identified as contributing to the nickel transport function under urban turf sites. High levels of disturbance lead to a higher relative abundance of gene sequences putatively identified as multiple antibiotic resistance protein marA and multidrug efflux pump mexD, but did not lead to an overall convergence in antibiotic resistance gene sequences.

7.
Zookeys ; (801): 1-3, 2018.
Article in English | MEDLINE | ID: mdl-30564029
8.
Zookeys ; (801): 97-126, 2018.
Article in English | MEDLINE | ID: mdl-30564033

ABSTRACT

In an increasingly urbanized world scientific research has shifted towards the understanding of cities as unique ecosystems. Urban land use change results in rapid and drastic changes in physical and biological properties, including that of biodiversity and community composition. Soil biodiversity research often lags behind the more charismatic groups such as vertebrates and plants. This paper attempts to fill this gap and provides an overview on urban isopod research. First, a brief overview on urban land use change is given, specifically on the major alterations on surface soils. Historical studies on urban isopods is summarized, followed by the status of current knowledge on diversity, distribution, and function of urban isopod species and communities. A review of more than 100 publications revealed that worldwide 50 cities and towns have some record of terrestrial isopod species, but only a few of those are city-scale explorations of urban fauna. A total of 110 isopod species has been recorded although the majority of them only once. The ten most frequently occurring isopods are widely distributed synanthropic species. Knowledge gaps and future research needs call for a better global dataset, long term monitoring of urban populations, multi-scale analyses of landscape properties as potential drivers of isopod diversity, and molecular studies to detect evolutionary changes.

9.
Oecologia ; 188(1): 237-250, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29948315

ABSTRACT

In temperate deciduous forests of eastern USA, most earthworm communities are dominated by invasive species. Their structure and functional group composition have critical impacts on ecological properties and processes. However, the factors determining their community structure are still poorly understood, and little is known regarding their dynamics during forest succession and the mechanisms leading to these changes. Earthworm communities are usually assumed to be stable and driven by vegetation. In contrast, the importance of dispersal and ecological drift is seldom acknowledged. By analyzing a 19-year dataset collected from forest stands in eastern USA, we demonstrated that on a decadal timescale, earthworm community dynamics are shaped by the interplay of selection, dispersal, and ecological drift. We highlighted that forests at different successional stages have distinct earthworm species and functional groups as a result of environmental filtering through leaf litter quality. Specifically, young forests are characterized by soil-feeding species that rely on relatively fresh soil organic matter derived from fast-decomposing litter, whereas old forests are characterized by those feeding on highly processed soil organic matter derived from slow-decomposing litter. In addition, year-to-year species gains and losses are primarily driven by dispersal from regional to local species pools, and by local extinction resulted from competition and ecological drift. We concluded that with continued dispersal of European species and the recent "second wave" of earthworm invasion by Asian species from the surrounding landscape, earthworms at the investigated forests are well-established, and will remain as the major drivers of soil development for the foreseeable future.


Subject(s)
Oligochaeta , Animals , Forests , Introduced Species , Plant Leaves , Soil
10.
PLoS One ; 12(8): e0181504, 2017.
Article in English | MEDLINE | ID: mdl-28792948

ABSTRACT

The family Lumbricidae is arguably the most well-known and well-studied earthworm group due to its dominance in the European earthworm fauna and its invasion in temperate regions worldwide. However, its North American members, especially the genus Bimastos Moore, 1893, are poorly understood. We revised the systematics of the genus Bimastos and tested the hypothesis of the monophyly of North American lumbricids using morphological characters and eight molecular markers. Phylogenetic analyses based on our extensive sampling of Bimastos and inclusion of Dendrodrilus and Allolobophoridella indicated a well-supported clade containing Bimastos and Eisenoides Gates, 1969, and provided the first evidence supporting that North American lumbricids are monophyletic. Assuming the available divergence time estimations and dating of land bridges are correct, it would suggest that the ancestor of this clade arrived North America through Beringia or the De Geer route during Late Cretaceous, and since then the clade has diverged from its Eurasian sister group, Eisenia. The peregrine genera Dendrodrilus and Allolobophoridella are nested within the Bimastos clade; we propose to treat them as junior synonyms of the genus Bimastos, and, contradictory to the commonly held belief of being European, they are indeed part of the indigenous North American earthworm fauna. Morphological characters, such as red-violet pigmentation, proclinate U-shaped nephridial bladders and calciferous diverticula in segment 10 further support this placement. The East Mediterranean-Levantine Spermophorodrilus Bouché, 1975 and Healyella Omodeo & Rota, 1989 are nested within the Dendrobaena sensu lato clade; therefore their close relationship with the North American Bimastos is refuted. Species fit the revised diagnosis of Bimastos are reviewed and keyed, and a new species, Bimastos schwerti sp. nov., is described.


Subject(s)
DNA, Mitochondrial/genetics , Evolution, Molecular , Oligochaeta , Animals , Base Sequence , Genetic Markers/genetics , Oligochaeta/anatomy & histology , Oligochaeta/classification , Oligochaeta/genetics , Phylogeny , Sequence Analysis, DNA , United States
11.
Nat Ecol Evol ; 1(5): 123, 2017 Apr 10.
Article in English | MEDLINE | ID: mdl-28812698

ABSTRACT

Urbanization alters the physicochemical environment, introduces non-native species and causes ecosystem characteristics to converge. It has been speculated that these alterations contribute to loss of regional and global biodiversity, but so far most urban studies have assessed macro-organisms and reported mixed evidence for biodiversity loss. We studied five cities on three continents to assess the global convergence of urban soil microbial communities. We determined the extent to which communities of bacteria, archaea and fungi are geographically distributed, and to what extent urbanization acts as a filter on species diversity. We discovered that microbial communities in general converge, but the response differed among microbial domains; soil archaeal communities showed the strongest convergence, followed by fungi, while soil bacterial communities did not converge. Our data suggest that urban soil archaeal and bacterial communities are not vulnerable to biodiversity loss, whereas urbanization may be contributing to the global diversity loss of ectomycorrhizal fungi. Ectomycorrhizae decreased in both abundance and species richness under turf and ruderal land-uses. These data add to an emerging pattern of widespread suppression of ectomycorrhizal fungi by human land-uses that involve physical disruption of the soil, management of the plant community, or nutrient enrichment.

12.
Zootaxa ; 4179(3): 495-529, 2016 Oct 31.
Article in English | MEDLINE | ID: mdl-27811684

ABSTRACT

The invasion of the pheretimoid earthworms in North America, especially the genera Amynthas and Metaphire, has raised increasing concerns among ecologists and land managers, in turn increasing the need for proper identification. However, the commonly used keys to this group are more than 30 years old with outdated taxonomic information and are based primarily on internal morphology. The requirement of significant amount of taxonomic expertise and dissection, even from the first entry of the key, has prevented broader use of these keys. As a result, many publications in the United States have used Amynthas spp. to represent the group without identifying the species. We present here a new key and diagnoses for the 16 pheretimoid earthworm species recorded in North America north of Mexico, including four genera: Amynthas (10), Metaphire (4), Pithemera (1), and Polypheretima (1). The descriptions were based on published records with modifications following inspection of specimens archived at the National Museum of Natural History, Smithsonian Institution, Washington, D.C. Photos of external and internal characters, including male pores, spermathecal pores, genital markings, spermathecae, prostate glands, and intestinal caeca, are presented to help identification. A summary of current knowledge about the ecology and historical context is provided for each species. We also highlight the previously overlooked and potentially common and widespread co-occurrence of three species-A. agrestis, A. tokioensis, and M. hilgendorfi-and point out that many recent claims of invasion of A. agrestis need to be re-evaluated for potential misidentification.


Subject(s)
Oligochaeta/anatomy & histology , Oligochaeta/classification , Animals , Ecosystem , Introduced Species , North America , Species Specificity
13.
Ecology ; 97(3): 605-14, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27197388

ABSTRACT

A mounting body of research suggests that invasive nonnative earthworms substantially alter microbial communities, including arbuscular mycorrhizal fungi (AMF). These changes to AMF can cascade to affect plant communities and vertebrate populations. Despite these research advances, relatively little is known about (1) the mechanisms behind earthworms' effects on AMF and (2) the factors that determine the outcomes of earthworm-AMF interactions (i.e., whether AMF abundance is increased or decreased and subsequent effects on plants). We predict that AMF-mediated effects of nonnative earthworms on ecosystems are nearly universal because (1) AMF are important components of most terrestrial ecosystems, (2) nonnative earthworms have become established in nearly every type of terrestrial ecosystem, and (3) nonnative earthworms, due to their burrowing and feeding behavior, greatly affect AMF with potentially profound concomitant effects on plant communities. We highlight the multiple direct and indirect effects of nonnative earthworms on plants and review what is currently known about the interaction between earthworms and AMF. We also illustrate how the effects of nonnative earthworms on plant-AMF mutualisms can alter the structure and stability of aboveground plant communities, as well as the vertebrate communities relying on these habitats. Integrative studies that assess the interactive effects of earthworms and AMF can provide new insights into the role that belowground ecosystem engineers play in altering aboveground ecological processes. Understanding these processes may improve our ability to predict the structure of plant and animal communities in earthworm-invaded regions and to develop management strategies that limit the numerous undesired impacts of earthworms.


Subject(s)
Ecosystem , Mycorrhizae/physiology , Oligochaeta/physiology , Plants/microbiology , Animals , Introduced Species , Oligochaeta/classification
14.
Ecology ; 97(1): 160-70, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27008785

ABSTRACT

The factors regulating soil animal communities are poorly understood. Current theory favors niche complementarity and facilitation over competition as the primary forms of non-trophic interspecific interaction in soil fauna; however, competition has frequently been suggested as an important community-structuring factor in earthworms, ecosystem engineers that influence belowground processes. To date, direct evidence of competition in earthworms is lacking due to the difficulty inherent in identifying a limiting resource for saprophagous animals. In the present study, we offer the first direct evidence of interspecific competition for food in this dominant soil detritivore group by combining field observations with laboratory mesocosm experiments using 13C and 15N double-enriched leaf litter to track consumption patterns. In our experiments, the Asian invasive species Amynthas hilgendorfi was a dominant competitor for leaf litter against two European species currently invading the temperate deciduous forests in North America. This competitive advantage may account for recent invasion success of A. hilgendorfi in forests with established populations of European species, and we hypothesize that specific phenological differences play an important role in determining the outcome of the belowground competition. In contrast, Eisenoides lonnbergi, a common native species in the Eastern United States, occupied a unique trophic position with limited interactions with other species, which may contribute to its persistence in habitats dominated by invasive species. Furthermore, our results supported neither the hypothesis that facilitation occurs between species of different functional groups nor the hypothesis that species in the same group exhibit functional equivalency in C and N translocation in the soil. We propose that species identity is a more powerful approach to understand earthworm invasion and its impacts on belowground processes.


Subject(s)
Feeding Behavior , Introduced Species , Oligochaeta/classification , Oligochaeta/physiology , Animals , North America , Soil
15.
Zookeys ; (515): 127-43, 2015.
Article in English | MEDLINE | ID: mdl-26261445

ABSTRACT

Introduced species dominate the terrestrial isopod fauna in most inland habitats of North America, including urban landscapes. These non-native species are often very abundant and thus potentially play a significant role in detritus processing. We monitored isopod assemblages in an urban forest for a year to examine the relationship between surface activity and abiotic environmental factors, and to analyze reproductive characteristics that might contribute to their successful establishment. Using pitfall trap samples we recorded five species, two of which, Trachelipusrathkii and Cylisticusconvexus, were highly abundant. We determined size, sex and reproductive state of each individual. Surface activity of both species reflected variability in abiotic stress factors for isopods, such as soil moisture and soil temperature. Early spring the main trigger was soil temperature while later in the season increasing temperature and decreasing soil moisture jointly affected population dynamics. Activity significantly correlated with soil moisture. The temporal pattern of sex ratios supported the secondary sex ratio hypothesis. Males dominated the samples on the onset of the mating season in search of females. The pattern was reversed as females searched for suitable microsites for their offspring. Size independent fecundity decreased as conditions became more stressful late in the season.

16.
J Environ Manage ; 92(3): 331-62, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20965643

ABSTRACT

Urban ecological studies, including focus on cities, suburbs, and exurbs, while having deep roots in the early to mid 20th century, have burgeoned in the last several decades. We use the state factor approach to highlight the role of important aspects of climate, substrate, organisms, relief, and time in differentiating urban from non-urban areas, and for determining heterogeneity within spatially extensive metropolitan areas. In addition to reviewing key findings relevant to each state factor, we note the emergence of tentative "urban syndromes" concerning soils, streams, wildlife and plants, and homogenization of certain ecosystem functions, such as soil organic carbon dynamics. We note the utility of the ecosystem approach, the human ecosystem framework, and watersheds as integrative tools to tie information about multiple state factors together. The organismal component of urban complexes includes the social organization of the human population, and we review key modes by which human populations within urban areas are differentiated, and how such differentiation affects environmentally relevant actions. Emerging syntheses in land change science and ecological urban design are also summarized. The multifaceted frameworks and the growing urban knowledge base do however identify some pressing research needs.


Subject(s)
Ecology , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...